Documentation

Mathlib.Data.DFinsupp.Basic

Dependent functions with finite support #

For a non-dependent version see data/finsupp.lean.

Notation #

This file introduces the notation Π₀ a, β a as notation for DFinsupp β, mirroring the α →₀ β notation used for Finsupp. This works for nested binders too, with Π₀ a b, γ a b as notation for DFinsupp (fun a ↦ DFinsupp (γ a)).

Implementation notes #

The support is internally represented (in the primed DFinsupp.support') as a Multiset that represents a superset of the true support of the function, quotiented by the always-true relation so that this does not impact equality. This approach has computational benefits over storing a Finset; it allows us to add together two finitely-supported functions without having to evaluate the resulting function to recompute its support (which would required decidability of b = 0 for b : β i).

The true support of the function can still be recovered with DFinsupp.support; but these decidability obligations are now postponed to when the support is actually needed. As a consequence, there are two ways to sum a DFinsupp: with DFinsupp.sum which works over an arbitrary function but requires recomputation of the support and therefore a Decidable argument; and with DFinsupp.sumAddHom which requires an additive morphism, using its properties to show that summing over a superset of the support is sufficient.

Finsupp takes an altogether different approach here; it uses Classical.Decidable and declares the Add instance as noncomputable. This design difference is independent of the fact that DFinsupp is dependently-typed and Finsupp is not; in future, we may want to align these two definitions, or introduce two more definitions for the other combinations of decisions.

structure DFinsupp {ι : Type u} (β : ιType v) [(i : ι) → Zero (β i)] :
Type (max u v)

A dependent function Π i, β i with finite support, with notation Π₀ i, β i.

Note that DFinsupp.support is the preferred API for accessing the support of the function, DFinsupp.support' is an implementation detail that aids computability; see the implementation notes in this file for more information.

  • mk' :: (
    • toFun : (i : ι) → β i

      The underlying function of a dependent function with finite support (aka DFinsupp).

    • support' : Trunc { s : Multiset ι // ∀ (i : ι), i s self.toFun i = 0 }

      The support of a dependent function with finite support (aka DFinsupp).

  • )
Instances For
    instance DFinsupp.instDFunLike {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] :
    DFunLike (Π₀ (i : ι), β i) ι β
    Equations
    • DFinsupp.instDFunLike = { coe := fun (f : Π₀ (i : ι), β i) => f.toFun, coe_injective' := }
    instance DFinsupp.instCoeFunForall {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] :
    CoeFun (Π₀ (i : ι), β i) fun (x : Π₀ (i : ι), β i) => (i : ι) → β i

    Helper instance for when there are too many metavariables to apply DFunLike.coeFunForall directly.

    Equations
    • DFinsupp.instCoeFunForall = inferInstance
    @[simp]
    theorem DFinsupp.toFun_eq_coe {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] (f : Π₀ (i : ι), β i) :
    f.toFun = f
    theorem DFinsupp.ext {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] {f : Π₀ (i : ι), β i} {g : Π₀ (i : ι), β i} (h : ∀ (i : ι), f i = g i) :
    f = g
    theorem DFinsupp.ne_iff {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] {f : Π₀ (i : ι), β i} {g : Π₀ (i : ι), β i} :
    f g ∃ (i : ι), f i g i
    instance DFinsupp.instZero {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] :
    Zero (Π₀ (i : ι), β i)
    Equations
    • DFinsupp.instZero = { zero := { toFun := 0, support' := Trunc.mk , } }
    instance DFinsupp.instInhabited {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] :
    Inhabited (Π₀ (i : ι), β i)
    Equations
    • DFinsupp.instInhabited = { default := 0 }
    @[simp]
    theorem DFinsupp.coe_mk' {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] (f : (i : ι) → β i) (s : Trunc { s : Multiset ι // ∀ (i : ι), i s f i = 0 }) :
    { toFun := f, support' := s } = f
    @[simp]
    theorem DFinsupp.coe_zero {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] :
    0 = 0
    theorem DFinsupp.zero_apply {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] (i : ι) :
    0 i = 0
    def DFinsupp.mapRange {ι : Type u} {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → Zero (β₁ i)] [(i : ι) → Zero (β₂ i)] (f : (i : ι) → β₁ iβ₂ i) (hf : ∀ (i : ι), f i 0 = 0) (x : Π₀ (i : ι), β₁ i) :
    Π₀ (i : ι), β₂ i

    The composition of f : β₁ → β₂ and g : Π₀ i, β₁ i is mapRange f hf g : Π₀ i, β₂ i, well defined when f 0 = 0.

    This preserves the structure on f, and exists in various bundled forms for when f is itself bundled:

    Equations
    Instances For
      @[simp]
      theorem DFinsupp.mapRange_apply {ι : Type u} {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → Zero (β₁ i)] [(i : ι) → Zero (β₂ i)] (f : (i : ι) → β₁ iβ₂ i) (hf : ∀ (i : ι), f i 0 = 0) (g : Π₀ (i : ι), β₁ i) (i : ι) :
      (DFinsupp.mapRange f hf g) i = f i (g i)
      @[simp]
      theorem DFinsupp.mapRange_id {ι : Type u} {β₁ : ιType v₁} [(i : ι) → Zero (β₁ i)] (h : optParam (∀ (i : ι), id 0 = 0) ) (g : Π₀ (i : ι), β₁ i) :
      DFinsupp.mapRange (fun (i : ι) => id) h g = g
      theorem DFinsupp.mapRange_comp {ι : Type u} {β : ιType v} {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → Zero (β i)] [(i : ι) → Zero (β₁ i)] [(i : ι) → Zero (β₂ i)] (f : (i : ι) → β₁ iβ₂ i) (f₂ : (i : ι) → β iβ₁ i) (hf : ∀ (i : ι), f i 0 = 0) (hf₂ : ∀ (i : ι), f₂ i 0 = 0) (h : ∀ (i : ι), (f i f₂ i) 0 = 0) (g : Π₀ (i : ι), β i) :
      DFinsupp.mapRange (fun (i : ι) => f i f₂ i) h g = DFinsupp.mapRange f hf (DFinsupp.mapRange f₂ hf₂ g)
      @[simp]
      theorem DFinsupp.mapRange_zero {ι : Type u} {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → Zero (β₁ i)] [(i : ι) → Zero (β₂ i)] (f : (i : ι) → β₁ iβ₂ i) (hf : ∀ (i : ι), f i 0 = 0) :
      def DFinsupp.zipWith {ι : Type u} {β : ιType v} {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → Zero (β i)] [(i : ι) → Zero (β₁ i)] [(i : ι) → Zero (β₂ i)] (f : (i : ι) → β₁ iβ₂ iβ i) (hf : ∀ (i : ι), f i 0 0 = 0) (x : Π₀ (i : ι), β₁ i) (y : Π₀ (i : ι), β₂ i) :
      Π₀ (i : ι), β i

      Let f i be a binary operation β₁ i → β₂ i → β i such that f i 0 0 = 0. Then zipWith f hf is a binary operation Π₀ i, β₁ i → Π₀ i, β₂ i → Π₀ i, β i.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem DFinsupp.zipWith_apply {ι : Type u} {β : ιType v} {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → Zero (β i)] [(i : ι) → Zero (β₁ i)] [(i : ι) → Zero (β₂ i)] (f : (i : ι) → β₁ iβ₂ iβ i) (hf : ∀ (i : ι), f i 0 0 = 0) (g₁ : Π₀ (i : ι), β₁ i) (g₂ : Π₀ (i : ι), β₂ i) (i : ι) :
        (DFinsupp.zipWith f hf g₁ g₂) i = f i (g₁ i) (g₂ i)
        def DFinsupp.piecewise {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] (x : Π₀ (i : ι), β i) (y : Π₀ (i : ι), β i) (s : Set ι) [(i : ι) → Decidable (i s)] :
        Π₀ (i : ι), β i

        x.piecewise y s is the finitely supported function equal to x on the set s, and to y on its complement.

        Equations
        Instances For
          theorem DFinsupp.piecewise_apply {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] (x : Π₀ (i : ι), β i) (y : Π₀ (i : ι), β i) (s : Set ι) [(i : ι) → Decidable (i s)] (i : ι) :
          (x.piecewise y s) i = if i s then x i else y i
          @[simp]
          theorem DFinsupp.coe_piecewise {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] (x : Π₀ (i : ι), β i) (y : Π₀ (i : ι), β i) (s : Set ι) [(i : ι) → Decidable (i s)] :
          (x.piecewise y s) = s.piecewise x y
          instance DFinsupp.instAdd {ι : Type u} {β : ιType v} [(i : ι) → AddZeroClass (β i)] :
          Add (Π₀ (i : ι), β i)
          Equations
          • DFinsupp.instAdd = { add := DFinsupp.zipWith (fun (x : ι) (x1 x2 : β x) => x1 + x2) }
          theorem DFinsupp.add_apply {ι : Type u} {β : ιType v} [(i : ι) → AddZeroClass (β i)] (g₁ : Π₀ (i : ι), β i) (g₂ : Π₀ (i : ι), β i) (i : ι) :
          (g₁ + g₂) i = g₁ i + g₂ i
          @[simp]
          theorem DFinsupp.coe_add {ι : Type u} {β : ιType v} [(i : ι) → AddZeroClass (β i)] (g₁ : Π₀ (i : ι), β i) (g₂ : Π₀ (i : ι), β i) :
          (g₁ + g₂) = g₁ + g₂
          instance DFinsupp.addZeroClass {ι : Type u} {β : ιType v} [(i : ι) → AddZeroClass (β i)] :
          AddZeroClass (Π₀ (i : ι), β i)
          Equations
          instance DFinsupp.instIsLeftCancelAdd {ι : Type u} {β : ιType v} [(i : ι) → AddZeroClass (β i)] [∀ (i : ι), IsLeftCancelAdd (β i)] :
          IsLeftCancelAdd (Π₀ (i : ι), β i)
          Equations
          • =
          instance DFinsupp.instIsRightCancelAdd {ι : Type u} {β : ιType v} [(i : ι) → AddZeroClass (β i)] [∀ (i : ι), IsRightCancelAdd (β i)] :
          IsRightCancelAdd (Π₀ (i : ι), β i)
          Equations
          • =
          instance DFinsupp.instIsCancelAdd {ι : Type u} {β : ιType v} [(i : ι) → AddZeroClass (β i)] [∀ (i : ι), IsCancelAdd (β i)] :
          IsCancelAdd (Π₀ (i : ι), β i)
          Equations
          • =
          instance DFinsupp.hasNatScalar {ι : Type u} {β : ιType v} [(i : ι) → AddMonoid (β i)] :
          SMul (Π₀ (i : ι), β i)

          Note the general SMul instance doesn't apply as is not distributive unless β i's addition is commutative.

          Equations
          • DFinsupp.hasNatScalar = { smul := fun (c : ) (v : Π₀ (i : ι), β i) => DFinsupp.mapRange (fun (x : ι) (x_1 : β x) => c x_1) v }
          theorem DFinsupp.nsmul_apply {ι : Type u} {β : ιType v} [(i : ι) → AddMonoid (β i)] (b : ) (v : Π₀ (i : ι), β i) (i : ι) :
          (b v) i = b v i
          @[simp]
          theorem DFinsupp.coe_nsmul {ι : Type u} {β : ιType v} [(i : ι) → AddMonoid (β i)] (b : ) (v : Π₀ (i : ι), β i) :
          (b v) = b v
          instance DFinsupp.instAddMonoid {ι : Type u} {β : ιType v} [(i : ι) → AddMonoid (β i)] :
          AddMonoid (Π₀ (i : ι), β i)
          Equations
          def DFinsupp.coeFnAddMonoidHom {ι : Type u} {β : ιType v} [(i : ι) → AddZeroClass (β i)] :
          (Π₀ (i : ι), β i) →+ (i : ι) → β i

          Coercion from a DFinsupp to a pi type is an AddMonoidHom.

          Equations
          • DFinsupp.coeFnAddMonoidHom = { toFun := DFunLike.coe, map_zero' := , map_add' := }
          Instances For
            def DFinsupp.evalAddMonoidHom {ι : Type u} {β : ιType v} [(i : ι) → AddZeroClass (β i)] (i : ι) :
            (Π₀ (i : ι), β i) →+ β i

            Evaluation at a point is an AddMonoidHom. This is the finitely-supported version of Pi.evalAddMonoidHom.

            Equations
            Instances For
              instance DFinsupp.addCommMonoid {ι : Type u} {β : ιType v} [(i : ι) → AddCommMonoid (β i)] :
              AddCommMonoid (Π₀ (i : ι), β i)
              Equations
              @[simp]
              theorem DFinsupp.coe_finset_sum {ι : Type u} {β : ιType v} {α : Type u_1} [(i : ι) → AddCommMonoid (β i)] (s : Finset α) (g : αΠ₀ (i : ι), β i) :
              (∑ as, g a) = as, (g a)
              @[simp]
              theorem DFinsupp.finset_sum_apply {ι : Type u} {β : ιType v} {α : Type u_1} [(i : ι) → AddCommMonoid (β i)] (s : Finset α) (g : αΠ₀ (i : ι), β i) (i : ι) :
              (∑ as, g a) i = as, (g a) i
              instance DFinsupp.instNeg {ι : Type u} {β : ιType v} [(i : ι) → AddGroup (β i)] :
              Neg (Π₀ (i : ι), β i)
              Equations
              • DFinsupp.instNeg = { neg := fun (f : Π₀ (i : ι), β i) => DFinsupp.mapRange (fun (x : ι) => Neg.neg) f }
              theorem DFinsupp.neg_apply {ι : Type u} {β : ιType v} [(i : ι) → AddGroup (β i)] (g : Π₀ (i : ι), β i) (i : ι) :
              (-g) i = -g i
              @[simp]
              theorem DFinsupp.coe_neg {ι : Type u} {β : ιType v} [(i : ι) → AddGroup (β i)] (g : Π₀ (i : ι), β i) :
              (-g) = -g
              instance DFinsupp.instSub {ι : Type u} {β : ιType v} [(i : ι) → AddGroup (β i)] :
              Sub (Π₀ (i : ι), β i)
              Equations
              theorem DFinsupp.sub_apply {ι : Type u} {β : ιType v} [(i : ι) → AddGroup (β i)] (g₁ : Π₀ (i : ι), β i) (g₂ : Π₀ (i : ι), β i) (i : ι) :
              (g₁ - g₂) i = g₁ i - g₂ i
              @[simp]
              theorem DFinsupp.coe_sub {ι : Type u} {β : ιType v} [(i : ι) → AddGroup (β i)] (g₁ : Π₀ (i : ι), β i) (g₂ : Π₀ (i : ι), β i) :
              (g₁ - g₂) = g₁ - g₂
              instance DFinsupp.hasIntScalar {ι : Type u} {β : ιType v} [(i : ι) → AddGroup (β i)] :
              SMul (Π₀ (i : ι), β i)

              Note the general SMul instance doesn't apply as is not distributive unless β i's addition is commutative.

              Equations
              • DFinsupp.hasIntScalar = { smul := fun (c : ) (v : Π₀ (i : ι), β i) => DFinsupp.mapRange (fun (x : ι) (x_1 : β x) => c x_1) v }
              theorem DFinsupp.zsmul_apply {ι : Type u} {β : ιType v} [(i : ι) → AddGroup (β i)] (b : ) (v : Π₀ (i : ι), β i) (i : ι) :
              (b v) i = b v i
              @[simp]
              theorem DFinsupp.coe_zsmul {ι : Type u} {β : ιType v} [(i : ι) → AddGroup (β i)] (b : ) (v : Π₀ (i : ι), β i) :
              (b v) = b v
              instance DFinsupp.instAddGroup {ι : Type u} {β : ιType v} [(i : ι) → AddGroup (β i)] :
              AddGroup (Π₀ (i : ι), β i)
              Equations
              instance DFinsupp.addCommGroup {ι : Type u} {β : ιType v} [(i : ι) → AddCommGroup (β i)] :
              AddCommGroup (Π₀ (i : ι), β i)
              Equations
              instance DFinsupp.instSMulOfDistribMulAction {ι : Type u} {γ : Type w} {β : ιType v} [Monoid γ] [(i : ι) → AddMonoid (β i)] [(i : ι) → DistribMulAction γ (β i)] :
              SMul γ (Π₀ (i : ι), β i)

              Dependent functions with finite support inherit a semiring action from an action on each coordinate.

              Equations
              • DFinsupp.instSMulOfDistribMulAction = { smul := fun (c : γ) (v : Π₀ (i : ι), β i) => DFinsupp.mapRange (fun (x : ι) (x_1 : β x) => c x_1) v }
              theorem DFinsupp.smul_apply {ι : Type u} {γ : Type w} {β : ιType v} [Monoid γ] [(i : ι) → AddMonoid (β i)] [(i : ι) → DistribMulAction γ (β i)] (b : γ) (v : Π₀ (i : ι), β i) (i : ι) :
              (b v) i = b v i
              @[simp]
              theorem DFinsupp.coe_smul {ι : Type u} {γ : Type w} {β : ιType v} [Monoid γ] [(i : ι) → AddMonoid (β i)] [(i : ι) → DistribMulAction γ (β i)] (b : γ) (v : Π₀ (i : ι), β i) :
              (b v) = b v
              instance DFinsupp.smulCommClass {ι : Type u} {γ : Type w} {β : ιType v} {δ : Type u_1} [Monoid γ] [Monoid δ] [(i : ι) → AddMonoid (β i)] [(i : ι) → DistribMulAction γ (β i)] [(i : ι) → DistribMulAction δ (β i)] [∀ (i : ι), SMulCommClass γ δ (β i)] :
              SMulCommClass γ δ (Π₀ (i : ι), β i)
              Equations
              • =
              instance DFinsupp.isScalarTower {ι : Type u} {γ : Type w} {β : ιType v} {δ : Type u_1} [Monoid γ] [Monoid δ] [(i : ι) → AddMonoid (β i)] [(i : ι) → DistribMulAction γ (β i)] [(i : ι) → DistribMulAction δ (β i)] [SMul γ δ] [∀ (i : ι), IsScalarTower γ δ (β i)] :
              IsScalarTower γ δ (Π₀ (i : ι), β i)
              Equations
              • =
              instance DFinsupp.isCentralScalar {ι : Type u} {γ : Type w} {β : ιType v} [Monoid γ] [(i : ι) → AddMonoid (β i)] [(i : ι) → DistribMulAction γ (β i)] [(i : ι) → DistribMulAction γᵐᵒᵖ (β i)] [∀ (i : ι), IsCentralScalar γ (β i)] :
              IsCentralScalar γ (Π₀ (i : ι), β i)
              Equations
              • =
              instance DFinsupp.distribMulAction {ι : Type u} {γ : Type w} {β : ιType v} [Monoid γ] [(i : ι) → AddMonoid (β i)] [(i : ι) → DistribMulAction γ (β i)] :
              DistribMulAction γ (Π₀ (i : ι), β i)

              Dependent functions with finite support inherit a DistribMulAction structure from such a structure on each coordinate.

              Equations
              instance DFinsupp.module {ι : Type u} {γ : Type w} {β : ιType v} [Semiring γ] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → Module γ (β i)] :
              Module γ (Π₀ (i : ι), β i)

              Dependent functions with finite support inherit a module structure from such a structure on each coordinate.

              Equations
              def DFinsupp.filter {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] (p : ιProp) [DecidablePred p] (x : Π₀ (i : ι), β i) :
              Π₀ (i : ι), β i

              Filter p f is the function which is f i if p i is true and 0 otherwise.

              Equations
              • DFinsupp.filter p x = { toFun := fun (i : ι) => if p i then x i else 0, support' := Trunc.map (fun (xs : { s : Multiset ι // ∀ (i : ι), i s x.toFun i = 0 }) => xs, ) x.support' }
              Instances For
                @[simp]
                theorem DFinsupp.filter_apply {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] (p : ιProp) [DecidablePred p] (i : ι) (f : Π₀ (i : ι), β i) :
                (DFinsupp.filter p f) i = if p i then f i else 0
                theorem DFinsupp.filter_apply_pos {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] {p : ιProp} [DecidablePred p] (f : Π₀ (i : ι), β i) {i : ι} (h : p i) :
                (DFinsupp.filter p f) i = f i
                theorem DFinsupp.filter_apply_neg {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] {p : ιProp} [DecidablePred p] (f : Π₀ (i : ι), β i) {i : ι} (h : ¬p i) :
                (DFinsupp.filter p f) i = 0
                theorem DFinsupp.filter_pos_add_filter_neg {ι : Type u} {β : ιType v} [(i : ι) → AddZeroClass (β i)] (f : Π₀ (i : ι), β i) (p : ιProp) [DecidablePred p] :
                DFinsupp.filter p f + DFinsupp.filter (fun (i : ι) => ¬p i) f = f
                @[simp]
                theorem DFinsupp.filter_zero {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] (p : ιProp) [DecidablePred p] :
                @[simp]
                theorem DFinsupp.filter_add {ι : Type u} {β : ιType v} [(i : ι) → AddZeroClass (β i)] (p : ιProp) [DecidablePred p] (f : Π₀ (i : ι), β i) (g : Π₀ (i : ι), β i) :
                @[simp]
                theorem DFinsupp.filter_smul {ι : Type u} {γ : Type w} {β : ιType v} [Monoid γ] [(i : ι) → AddMonoid (β i)] [(i : ι) → DistribMulAction γ (β i)] (p : ιProp) [DecidablePred p] (r : γ) (f : Π₀ (i : ι), β i) :
                def DFinsupp.filterAddMonoidHom {ι : Type u} (β : ιType v) [(i : ι) → AddZeroClass (β i)] (p : ιProp) [DecidablePred p] :
                (Π₀ (i : ι), β i) →+ Π₀ (i : ι), β i

                DFinsupp.filter as an AddMonoidHom.

                Equations
                Instances For
                  @[simp]
                  theorem DFinsupp.filterAddMonoidHom_apply {ι : Type u} (β : ιType v) [(i : ι) → AddZeroClass (β i)] (p : ιProp) [DecidablePred p] (x : Π₀ (i : ι), β i) :
                  def DFinsupp.filterLinearMap {ι : Type u} (γ : Type w) (β : ιType v) [Semiring γ] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → Module γ (β i)] (p : ιProp) [DecidablePred p] :
                  (Π₀ (i : ι), β i) →ₗ[γ] Π₀ (i : ι), β i

                  DFinsupp.filter as a LinearMap.

                  Equations
                  Instances For
                    @[simp]
                    theorem DFinsupp.filterLinearMap_apply {ι : Type u} (γ : Type w) (β : ιType v) [Semiring γ] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → Module γ (β i)] (p : ιProp) [DecidablePred p] (x : Π₀ (i : ι), β i) :
                    @[simp]
                    theorem DFinsupp.filter_neg {ι : Type u} {β : ιType v} [(i : ι) → AddGroup (β i)] (p : ιProp) [DecidablePred p] (f : Π₀ (i : ι), β i) :
                    @[simp]
                    theorem DFinsupp.filter_sub {ι : Type u} {β : ιType v} [(i : ι) → AddGroup (β i)] (p : ιProp) [DecidablePred p] (f : Π₀ (i : ι), β i) (g : Π₀ (i : ι), β i) :
                    def DFinsupp.subtypeDomain {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] (p : ιProp) [DecidablePred p] (x : Π₀ (i : ι), β i) :
                    Π₀ (i : Subtype p), β i

                    subtypeDomain p f is the restriction of the finitely supported function f to the subtype p.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem DFinsupp.subtypeDomain_zero {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] {p : ιProp} [DecidablePred p] :
                      @[simp]
                      theorem DFinsupp.subtypeDomain_apply {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] {p : ιProp} [DecidablePred p] {i : Subtype p} {v : Π₀ (i : ι), β i} :
                      (DFinsupp.subtypeDomain p v) i = v i
                      @[simp]
                      theorem DFinsupp.subtypeDomain_add {ι : Type u} {β : ιType v} [(i : ι) → AddZeroClass (β i)] {p : ιProp} [DecidablePred p] (v : Π₀ (i : ι), β i) (v' : Π₀ (i : ι), β i) :
                      @[simp]
                      theorem DFinsupp.subtypeDomain_smul {ι : Type u} {γ : Type w} {β : ιType v} [Monoid γ] [(i : ι) → AddMonoid (β i)] [(i : ι) → DistribMulAction γ (β i)] {p : ιProp} [DecidablePred p] (r : γ) (f : Π₀ (i : ι), β i) :
                      def DFinsupp.subtypeDomainAddMonoidHom {ι : Type u} (β : ιType v) [(i : ι) → AddZeroClass (β i)] (p : ιProp) [DecidablePred p] :
                      (Π₀ (i : ι), β i) →+ Π₀ (i : Subtype p), β i

                      subtypeDomain but as an AddMonoidHom.

                      Equations
                      Instances For
                        @[simp]
                        theorem DFinsupp.subtypeDomainAddMonoidHom_apply {ι : Type u} (β : ιType v) [(i : ι) → AddZeroClass (β i)] (p : ιProp) [DecidablePred p] (x : Π₀ (i : ι), β i) :
                        def DFinsupp.subtypeDomainLinearMap {ι : Type u} (γ : Type w) (β : ιType v) [Semiring γ] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → Module γ (β i)] (p : ιProp) [DecidablePred p] :
                        (Π₀ (i : ι), β i) →ₗ[γ] Π₀ (i : Subtype p), β i

                        DFinsupp.subtypeDomain as a LinearMap.

                        Equations
                        Instances For
                          @[simp]
                          theorem DFinsupp.subtypeDomainLinearMap_apply {ι : Type u} (γ : Type w) (β : ιType v) [Semiring γ] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → Module γ (β i)] (p : ιProp) [DecidablePred p] (x : Π₀ (i : ι), β i) :
                          @[simp]
                          theorem DFinsupp.subtypeDomain_neg {ι : Type u} {β : ιType v} [(i : ι) → AddGroup (β i)] {p : ιProp} [DecidablePred p] {v : Π₀ (i : ι), β i} :
                          @[simp]
                          theorem DFinsupp.subtypeDomain_sub {ι : Type u} {β : ιType v} [(i : ι) → AddGroup (β i)] {p : ιProp} [DecidablePred p] {v : Π₀ (i : ι), β i} {v' : Π₀ (i : ι), β i} :
                          theorem DFinsupp.finite_support {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] (f : Π₀ (i : ι), β i) :
                          {i : ι | f i 0}.Finite
                          def DFinsupp.mk {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (s : Finset ι) (x : (i : s) → β i) :
                          Π₀ (i : ι), β i

                          Create an element of Π₀ i, β i from a finset s and a function x defined on this Finset.

                          Equations
                          • DFinsupp.mk s x = { toFun := fun (i : ι) => if H : i s then x i, H else 0, support' := Trunc.mk s.val, }
                          Instances For
                            @[simp]
                            theorem DFinsupp.mk_apply {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {s : Finset ι} {x : (i : s) → β i} {i : ι} :
                            (DFinsupp.mk s x) i = if H : i s then x i, H else 0
                            theorem DFinsupp.mk_of_mem {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {s : Finset ι} {x : (i : s) → β i} {i : ι} (hi : i s) :
                            (DFinsupp.mk s x) i = x i, hi
                            theorem DFinsupp.mk_of_not_mem {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {s : Finset ι} {x : (i : s) → β i} {i : ι} (hi : is) :
                            (DFinsupp.mk s x) i = 0
                            theorem DFinsupp.mk_injective {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (s : Finset ι) :
                            instance DFinsupp.unique {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [∀ (i : ι), Subsingleton (β i)] :
                            Unique (Π₀ (i : ι), β i)
                            Equations
                            • DFinsupp.unique = .unique
                            instance DFinsupp.uniqueOfIsEmpty {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [IsEmpty ι] :
                            Unique (Π₀ (i : ι), β i)
                            Equations
                            • DFinsupp.uniqueOfIsEmpty = .unique
                            def DFinsupp.equivFunOnFintype {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [Fintype ι] :
                            (Π₀ (i : ι), β i) ((i : ι) → β i)

                            Given Fintype ι, equivFunOnFintype is the Equiv between Π₀ i, β i and Π i, β i. (All dependent functions on a finite type are finitely supported.)

                            Equations
                            • DFinsupp.equivFunOnFintype = { toFun := DFunLike.coe, invFun := fun (f : (i : ι) → β i) => { toFun := f, support' := Trunc.mk Finset.univ.val, }, left_inv := , right_inv := }
                            Instances For
                              @[simp]
                              theorem DFinsupp.equivFunOnFintype_apply {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [Fintype ι] :
                              ∀ (a : Π₀ (i : ι), β i) (a_1 : ι), DFinsupp.equivFunOnFintype a a_1 = a a_1
                              @[simp]
                              theorem DFinsupp.equivFunOnFintype_symm_coe {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [Fintype ι] (f : Π₀ (i : ι), β i) :
                              DFinsupp.equivFunOnFintype.symm f = f
                              def DFinsupp.single {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (i : ι) (b : β i) :
                              Π₀ (i : ι), β i

                              The function single i b : Π₀ i, β i sends i to b and all other points to 0.

                              Equations
                              Instances For
                                theorem DFinsupp.single_eq_pi_single {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {i : ι} {b : β i} :
                                @[simp]
                                theorem DFinsupp.single_apply {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {i : ι} {i' : ι} {b : β i} :
                                (DFinsupp.single i b) i' = if h : i = i' then Eq.recOn h b else 0
                                @[simp]
                                theorem DFinsupp.single_zero {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (i : ι) :
                                theorem DFinsupp.single_eq_same {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {i : ι} {b : β i} :
                                (DFinsupp.single i b) i = b
                                theorem DFinsupp.single_eq_of_ne {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {i : ι} {i' : ι} {b : β i} (h : i i') :
                                (DFinsupp.single i b) i' = 0
                                theorem DFinsupp.single_injective {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {i : ι} :
                                theorem DFinsupp.single_eq_single_iff {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (i : ι) (j : ι) (xi : β i) (xj : β j) :
                                DFinsupp.single i xi = DFinsupp.single j xj i = j HEq xi xj xi = 0 xj = 0

                                Like Finsupp.single_eq_single_iff, but with a HEq due to dependent types

                                theorem DFinsupp.single_left_injective {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {b : (i : ι) → β i} (h : ∀ (i : ι), b i 0) :
                                Function.Injective fun (i : ι) => DFinsupp.single i (b i)

                                DFinsupp.single a b is injective in a. For the statement that it is injective in b, see DFinsupp.single_injective

                                @[simp]
                                theorem DFinsupp.single_eq_zero {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {i : ι} {xi : β i} :
                                DFinsupp.single i xi = 0 xi = 0
                                theorem DFinsupp.filter_single {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (p : ιProp) [DecidablePred p] (i : ι) (x : β i) :
                                DFinsupp.filter p (DFinsupp.single i x) = if p i then DFinsupp.single i x else 0
                                @[simp]
                                theorem DFinsupp.filter_single_pos {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {p : ιProp} [DecidablePred p] (i : ι) (x : β i) (h : p i) :
                                @[simp]
                                theorem DFinsupp.filter_single_neg {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {p : ιProp} [DecidablePred p] (i : ι) (x : β i) (h : ¬p i) :
                                theorem DFinsupp.single_eq_of_sigma_eq {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {i : ι} {j : ι} {xi : β i} {xj : β j} (h : i, xi = j, xj) :

                                Equality of sigma types is sufficient (but not necessary) to show equality of DFinsupps.

                                @[simp]
                                theorem DFinsupp.equivFunOnFintype_single {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] [Fintype ι] (i : ι) (m : β i) :
                                DFinsupp.equivFunOnFintype (DFinsupp.single i m) = Pi.single i m
                                @[simp]
                                theorem DFinsupp.equivFunOnFintype_symm_single {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] [Fintype ι] (i : ι) (m : β i) :
                                DFinsupp.equivFunOnFintype.symm (Pi.single i m) = DFinsupp.single i m
                                @[simp]
                                theorem DFinsupp.zipWith_single_single {ι : Type u} {β : ιType v} {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → Zero (β i)] [DecidableEq ι] [(i : ι) → Zero (β₁ i)] [(i : ι) → Zero (β₂ i)] (f : (i : ι) → β₁ iβ₂ iβ i) (hf : ∀ (i : ι), f i 0 0 = 0) {i : ι} (b₁ : β₁ i) (b₂ : β₂ i) :
                                DFinsupp.zipWith f hf (DFinsupp.single i b₁) (DFinsupp.single i b₂) = DFinsupp.single i (f i b₁ b₂)
                                def DFinsupp.erase {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (i : ι) (x : Π₀ (i : ι), β i) :
                                Π₀ (i : ι), β i

                                Redefine f i to be 0.

                                Equations
                                • DFinsupp.erase i x = { toFun := fun (j : ι) => if j = i then 0 else x.toFun j, support' := Trunc.map (fun (xs : { s : Multiset ι // ∀ (i : ι), i s x.toFun i = 0 }) => xs, ) x.support' }
                                Instances For
                                  @[simp]
                                  theorem DFinsupp.erase_apply {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {i : ι} {j : ι} {f : Π₀ (i : ι), β i} :
                                  (DFinsupp.erase i f) j = if j = i then 0 else f j
                                  theorem DFinsupp.erase_same {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {i : ι} {f : Π₀ (i : ι), β i} :
                                  (DFinsupp.erase i f) i = 0
                                  theorem DFinsupp.erase_ne {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {i : ι} {i' : ι} {f : Π₀ (i : ι), β i} (h : i' i) :
                                  (DFinsupp.erase i f) i' = f i'
                                  theorem DFinsupp.piecewise_single_erase {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (x : Π₀ (i : ι), β i) (i : ι) [(i' : ι) → Decidable (i' {i})] :
                                  (DFinsupp.single i (x i)).piecewise (DFinsupp.erase i x) {i} = x
                                  theorem DFinsupp.erase_eq_sub_single {ι : Type u} [DecidableEq ι] {β : ιType u_1} [(i : ι) → AddGroup (β i)] (f : Π₀ (i : ι), β i) (i : ι) :
                                  @[simp]
                                  theorem DFinsupp.erase_zero {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (i : ι) :
                                  @[simp]
                                  theorem DFinsupp.filter_ne_eq_erase {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (f : Π₀ (i : ι), β i) (i : ι) :
                                  DFinsupp.filter (fun (x : ι) => x i) f = DFinsupp.erase i f
                                  @[simp]
                                  theorem DFinsupp.filter_ne_eq_erase' {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (f : Π₀ (i : ι), β i) (i : ι) :
                                  DFinsupp.filter (fun (x : ι) => i x) f = DFinsupp.erase i f
                                  theorem DFinsupp.erase_single {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (j : ι) (i : ι) (x : β i) :
                                  DFinsupp.erase j (DFinsupp.single i x) = if i = j then 0 else DFinsupp.single i x
                                  @[simp]
                                  theorem DFinsupp.erase_single_same {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (i : ι) (x : β i) :
                                  @[simp]
                                  theorem DFinsupp.erase_single_ne {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] {i : ι} {j : ι} (x : β i) (h : i j) :
                                  def DFinsupp.update {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (f : Π₀ (i : ι), β i) (i : ι) (b : β i) :
                                  Π₀ (i : ι), β i

                                  Replace the value of a Π₀ i, β i at a given point i : ι by a given value b : β i. If b = 0, this amounts to removing i from the support. Otherwise, i is added to it.

                                  This is the (dependent) finitely-supported version of Function.update.

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem DFinsupp.coe_update {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (f : Π₀ (i : ι), β i) (i : ι) (b : β i) :
                                    (f.update i b) = Function.update (⇑f) i b
                                    @[simp]
                                    theorem DFinsupp.update_self {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (f : Π₀ (i : ι), β i) (i : ι) :
                                    f.update i (f i) = f
                                    @[simp]
                                    theorem DFinsupp.update_eq_erase {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [DecidableEq ι] (f : Π₀ (i : ι), β i) (i : ι) :
                                    f.update i 0 = DFinsupp.erase i f
                                    theorem DFinsupp.update_eq_single_add_erase {ι : Type u} [DecidableEq ι] {β : ιType u_1} [(i : ι) → AddZeroClass (β i)] (f : Π₀ (i : ι), β i) (i : ι) (b : β i) :
                                    f.update i b = DFinsupp.single i b + DFinsupp.erase i f
                                    theorem DFinsupp.update_eq_erase_add_single {ι : Type u} [DecidableEq ι] {β : ιType u_1} [(i : ι) → AddZeroClass (β i)] (f : Π₀ (i : ι), β i) (i : ι) (b : β i) :
                                    f.update i b = DFinsupp.erase i f + DFinsupp.single i b
                                    theorem DFinsupp.update_eq_sub_add_single {ι : Type u} [DecidableEq ι] {β : ιType u_1} [(i : ι) → AddGroup (β i)] (f : Π₀ (i : ι), β i) (i : ι) (b : β i) :
                                    f.update i b = f - DFinsupp.single i (f i) + DFinsupp.single i b
                                    @[simp]
                                    theorem DFinsupp.single_add {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] (i : ι) (b₁ : β i) (b₂ : β i) :
                                    DFinsupp.single i (b₁ + b₂) = DFinsupp.single i b₁ + DFinsupp.single i b₂
                                    @[simp]
                                    theorem DFinsupp.erase_add {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] (i : ι) (f₁ : Π₀ (i : ι), β i) (f₂ : Π₀ (i : ι), β i) :
                                    DFinsupp.erase i (f₁ + f₂) = DFinsupp.erase i f₁ + DFinsupp.erase i f₂
                                    def DFinsupp.singleAddHom {ι : Type u} (β : ιType v) [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] (i : ι) :
                                    β i →+ Π₀ (i : ι), β i

                                    DFinsupp.single as an AddMonoidHom.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem DFinsupp.singleAddHom_apply {ι : Type u} (β : ιType v) [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] (i : ι) (b : β i) :
                                      def DFinsupp.eraseAddHom {ι : Type u} (β : ιType v) [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] (i : ι) :
                                      (Π₀ (i : ι), β i) →+ Π₀ (i : ι), β i

                                      DFinsupp.erase as an AddMonoidHom.

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem DFinsupp.eraseAddHom_apply {ι : Type u} (β : ιType v) [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] (i : ι) (x : Π₀ (i : ι), β i) :
                                        @[simp]
                                        theorem DFinsupp.single_neg {ι : Type u} [DecidableEq ι] {β : ιType v} [(i : ι) → AddGroup (β i)] (i : ι) (x : β i) :
                                        @[simp]
                                        theorem DFinsupp.single_sub {ι : Type u} [DecidableEq ι] {β : ιType v} [(i : ι) → AddGroup (β i)] (i : ι) (x : β i) (y : β i) :
                                        @[simp]
                                        theorem DFinsupp.erase_neg {ι : Type u} [DecidableEq ι] {β : ιType v} [(i : ι) → AddGroup (β i)] (i : ι) (f : Π₀ (i : ι), β i) :
                                        @[simp]
                                        theorem DFinsupp.erase_sub {ι : Type u} [DecidableEq ι] {β : ιType v} [(i : ι) → AddGroup (β i)] (i : ι) (f : Π₀ (i : ι), β i) (g : Π₀ (i : ι), β i) :
                                        theorem DFinsupp.single_add_erase {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] (i : ι) (f : Π₀ (i : ι), β i) :
                                        theorem DFinsupp.erase_add_single {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] (i : ι) (f : Π₀ (i : ι), β i) :
                                        theorem DFinsupp.induction {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] {p : (Π₀ (i : ι), β i)Prop} (f : Π₀ (i : ι), β i) (h0 : p 0) (ha : ∀ (i : ι) (b : β i) (f : Π₀ (i : ι), β i), f i = 0b 0p fp (DFinsupp.single i b + f)) :
                                        p f
                                        theorem DFinsupp.induction₂ {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] {p : (Π₀ (i : ι), β i)Prop} (f : Π₀ (i : ι), β i) (h0 : p 0) (ha : ∀ (i : ι) (b : β i) (f : Π₀ (i : ι), β i), f i = 0b 0p fp (f + DFinsupp.single i b)) :
                                        p f
                                        @[simp]
                                        theorem DFinsupp.add_closure_iUnion_range_single {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] :
                                        theorem DFinsupp.addHom_ext {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] {γ : Type w} [AddZeroClass γ] ⦃f : (Π₀ (i : ι), β i) →+ γ ⦃g : (Π₀ (i : ι), β i) →+ γ (H : ∀ (i : ι) (y : β i), f (DFinsupp.single i y) = g (DFinsupp.single i y)) :
                                        f = g

                                        If two additive homomorphisms from Π₀ i, β i are equal on each single a b, then they are equal.

                                        theorem DFinsupp.addHom_ext' {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] {γ : Type w} [AddZeroClass γ] ⦃f : (Π₀ (i : ι), β i) →+ γ ⦃g : (Π₀ (i : ι), β i) →+ γ (H : ∀ (x : ι), f.comp (DFinsupp.singleAddHom β x) = g.comp (DFinsupp.singleAddHom β x)) :
                                        f = g

                                        If two additive homomorphisms from Π₀ i, β i are equal on each single a b, then they are equal.

                                        See note [partially-applied ext lemmas].

                                        @[simp]
                                        theorem DFinsupp.mk_add {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] {s : Finset ι} {x : (i : s) → β i} {y : (i : s) → β i} :
                                        @[simp]
                                        theorem DFinsupp.mk_zero {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] {s : Finset ι} :
                                        @[simp]
                                        theorem DFinsupp.mk_neg {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddGroup (β i)] {s : Finset ι} {x : (i : s) → β i} :
                                        @[simp]
                                        theorem DFinsupp.mk_sub {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddGroup (β i)] {s : Finset ι} {x : (i : s) → β i} {y : (i : s) → β i} :
                                        def DFinsupp.mkAddGroupHom {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddGroup (β i)] (s : Finset ι) :
                                        ((i : s) → β i) →+ Π₀ (i : ι), β i

                                        If s is a subset of ι then mk_addGroupHom s is the canonical additive group homomorphism from $\prod_{i\in s}\beta_i$ to $\prod_{\mathtt{i : \iota}}\beta_i.$

                                        Equations
                                        Instances For
                                          @[simp]
                                          theorem DFinsupp.mk_smul {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [Monoid γ] [(i : ι) → AddMonoid (β i)] [(i : ι) → DistribMulAction γ (β i)] {s : Finset ι} (c : γ) (x : (i : s) → β i) :
                                          @[simp]
                                          theorem DFinsupp.single_smul {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [Monoid γ] [(i : ι) → AddMonoid (β i)] [(i : ι) → DistribMulAction γ (β i)] {i : ι} (c : γ) (x : β i) :
                                          def DFinsupp.support {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] (f : Π₀ (i : ι), β i) :

                                          Set {i | f x ≠ 0} as a Finset.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            @[simp]
                                            theorem DFinsupp.support_mk_subset {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] {s : Finset ι} {x : (i : s) → β i} :
                                            (DFinsupp.mk s x).support s
                                            @[simp]
                                            theorem DFinsupp.support_mk'_subset {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] {f : (i : ι) → β i} {s : Multiset ι} {h : ∀ (i : ι), i s f i = 0} :
                                            { toFun := f, support' := Trunc.mk s, h }.support s.toFinset
                                            @[simp]
                                            theorem DFinsupp.mem_support_toFun {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] (f : Π₀ (i : ι), β i) (i : ι) :
                                            i f.support f i 0
                                            theorem DFinsupp.eq_mk_support {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] (f : Π₀ (i : ι), β i) :
                                            f = DFinsupp.mk f.support fun (i : f.support) => f i
                                            def DFinsupp.subtypeSupportEqEquiv {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] (s : Finset ι) :
                                            { f : Π₀ (i : ι), β i // f.support = s } ((i : { x : ι // x s }) → { x : β i // x 0 })

                                            Equivalence between dependent functions with finite support s : Finset ι and functions ∀ i, {x : β i // x ≠ 0}.

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For
                                              @[simp]
                                              theorem DFinsupp.subtypeSupportEqEquiv_symm_apply_coe {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] (s : Finset ι) (f : (i : { x : ι // x s }) → { x : β i // x 0 }) :
                                              ((DFinsupp.subtypeSupportEqEquiv s).symm f) = DFinsupp.mk s fun (i : s) => (f i)
                                              @[simp]
                                              theorem DFinsupp.subtypeSupportEqEquiv_apply_coe {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] (s : Finset ι) :
                                              ∀ (x : { f : Π₀ (i : ι), β i // f.support = s }) (i : { x : ι // x s }), ((DFinsupp.subtypeSupportEqEquiv s) x i) = x i
                                              def DFinsupp.sigmaFinsetFunEquiv {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] :
                                              (Π₀ (i : ι), β i) (s : Finset ι) × ((i : { x : ι // x s }) → { x : β i // x 0 })

                                              Equivalence between all dependent finitely supported functions f : Π₀ i, β i and type of pairs ⟨s : Finset ι, f : ∀ i : s, {x : β i // x ≠ 0}⟩.

                                              Equations
                                              Instances For
                                                @[simp]
                                                theorem DFinsupp.sigmaFinsetFunEquiv_apply_snd_coe {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] :
                                                ∀ (a : Π₀ (i : ι), β i) (i : { x : ι // x ((Equiv.sigmaFiberEquiv DFinsupp.support).symm a).fst }), ((DFinsupp.sigmaFinsetFunEquiv a).snd i) = a i
                                                @[simp]
                                                theorem DFinsupp.sigmaFinsetFunEquiv_apply_fst {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] :
                                                ∀ (a : Π₀ (i : ι), β i), (DFinsupp.sigmaFinsetFunEquiv a).fst = a.support
                                                @[simp]
                                                theorem DFinsupp.support_zero {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] :
                                                theorem DFinsupp.mem_support_iff {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] {f : Π₀ (i : ι), β i} {i : ι} :
                                                i f.support f i 0
                                                theorem DFinsupp.not_mem_support_iff {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] {f : Π₀ (i : ι), β i} {i : ι} :
                                                if.support f i = 0
                                                @[simp]
                                                theorem DFinsupp.support_eq_empty {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] {f : Π₀ (i : ι), β i} :
                                                f.support = f = 0
                                                instance DFinsupp.decidableZero {ι : Type u} {β : ιType v} [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x = 0)] (f : Π₀ (i : ι), β i) :
                                                Decidable (f = 0)
                                                Equations
                                                • f.decidableZero = f.support'.recOnSubsingleton fun (s : { s : Multiset ι // ∀ (i : ι), i s f.toFun i = 0 }) => decidable_of_iff (∀ is, f i = 0)
                                                theorem DFinsupp.support_subset_iff {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] {s : Set ι} {f : Π₀ (i : ι), β i} :
                                                f.support s is, f i = 0
                                                theorem DFinsupp.support_single_ne_zero {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] {i : ι} {b : β i} (hb : b 0) :
                                                (DFinsupp.single i b).support = {i}
                                                theorem DFinsupp.support_single_subset {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] {i : ι} {b : β i} :
                                                (DFinsupp.single i b).support {i}
                                                theorem DFinsupp.mapRange_def {ι : Type u} {β₁ : ιType v₁} {β₂ : ιType v₂} [DecidableEq ι] [(i : ι) → Zero (β₁ i)] [(i : ι) → Zero (β₂ i)] [(i : ι) → (x : β₁ i) → Decidable (x 0)] {f : (i : ι) → β₁ iβ₂ i} {hf : ∀ (i : ι), f i 0 = 0} {g : Π₀ (i : ι), β₁ i} :
                                                DFinsupp.mapRange f hf g = DFinsupp.mk g.support fun (i : g.support) => f (↑i) (g i)
                                                @[simp]
                                                theorem DFinsupp.mapRange_single {ι : Type u} {β₁ : ιType v₁} {β₂ : ιType v₂} [DecidableEq ι] [(i : ι) → Zero (β₁ i)] [(i : ι) → Zero (β₂ i)] {f : (i : ι) → β₁ iβ₂ i} {hf : ∀ (i : ι), f i 0 = 0} {i : ι} {b : β₁ i} :
                                                theorem DFinsupp.support_mapRange {ι : Type u} {β₁ : ιType v₁} {β₂ : ιType v₂} [DecidableEq ι] [(i : ι) → Zero (β₁ i)] [(i : ι) → Zero (β₂ i)] [(i : ι) → (x : β₁ i) → Decidable (x 0)] [(i : ι) → (x : β₂ i) → Decidable (x 0)] {f : (i : ι) → β₁ iβ₂ i} {hf : ∀ (i : ι), f i 0 = 0} {g : Π₀ (i : ι), β₁ i} :
                                                (DFinsupp.mapRange f hf g).support g.support
                                                theorem DFinsupp.zipWith_def {ι : Type u} {β : ιType v} {β₁ : ιType v₁} {β₂ : ιType v₂} [dec : DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → Zero (β₁ i)] [(i : ι) → Zero (β₂ i)] [(i : ι) → (x : β₁ i) → Decidable (x 0)] [(i : ι) → (x : β₂ i) → Decidable (x 0)] {f : (i : ι) → β₁ iβ₂ iβ i} {hf : ∀ (i : ι), f i 0 0 = 0} {g₁ : Π₀ (i : ι), β₁ i} {g₂ : Π₀ (i : ι), β₂ i} :
                                                DFinsupp.zipWith f hf g₁ g₂ = DFinsupp.mk (g₁.support g₂.support) fun (i : (g₁.support g₂.support)) => f (↑i) (g₁ i) (g₂ i)
                                                theorem DFinsupp.support_zipWith {ι : Type u} {β : ιType v} {β₁ : ιType v₁} {β₂ : ιType v₂} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [(i : ι) → Zero (β₁ i)] [(i : ι) → Zero (β₂ i)] [(i : ι) → (x : β₁ i) → Decidable (x 0)] [(i : ι) → (x : β₂ i) → Decidable (x 0)] {f : (i : ι) → β₁ iβ₂ iβ i} {hf : ∀ (i : ι), f i 0 0 = 0} {g₁ : Π₀ (i : ι), β₁ i} {g₂ : Π₀ (i : ι), β₂ i} :
                                                (DFinsupp.zipWith f hf g₁ g₂).support g₁.support g₂.support
                                                theorem DFinsupp.erase_def {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] (i : ι) (f : Π₀ (i : ι), β i) :
                                                DFinsupp.erase i f = DFinsupp.mk (f.support.erase i) fun (j : (f.support.erase i)) => f j
                                                @[simp]
                                                theorem DFinsupp.support_erase {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] (i : ι) (f : Π₀ (i : ι), β i) :
                                                (DFinsupp.erase i f).support = f.support.erase i
                                                theorem DFinsupp.support_update_ne_zero {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] (f : Π₀ (i : ι), β i) (i : ι) {b : β i} (h : b 0) :
                                                (f.update i b).support = insert i f.support
                                                theorem DFinsupp.support_update {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] (f : Π₀ (i : ι), β i) (i : ι) (b : β i) [Decidable (b = 0)] :
                                                (f.update i b).support = if b = 0 then (DFinsupp.erase i f).support else insert i f.support
                                                theorem DFinsupp.filter_def {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] {p : ιProp} [DecidablePred p] (f : Π₀ (i : ι), β i) :
                                                DFinsupp.filter p f = DFinsupp.mk (Finset.filter p f.support) fun (i : (Finset.filter p f.support)) => f i
                                                @[simp]
                                                theorem DFinsupp.support_filter {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] {p : ιProp} [DecidablePred p] (f : Π₀ (i : ι), β i) :
                                                (DFinsupp.filter p f).support = Finset.filter p f.support
                                                theorem DFinsupp.subtypeDomain_def {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] {p : ιProp} [DecidablePred p] (f : Π₀ (i : ι), β i) :
                                                DFinsupp.subtypeDomain p f = DFinsupp.mk (Finset.subtype p f.support) fun (i : (Finset.subtype p f.support)) => f i
                                                @[simp]
                                                theorem DFinsupp.support_subtypeDomain {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] {p : ιProp} [DecidablePred p] {f : Π₀ (i : ι), β i} :
                                                (DFinsupp.subtypeDomain p f).support = Finset.subtype p f.support
                                                theorem DFinsupp.support_add {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] {g₁ : Π₀ (i : ι), β i} {g₂ : Π₀ (i : ι), β i} :
                                                (g₁ + g₂).support g₁.support g₂.support
                                                @[simp]
                                                theorem DFinsupp.support_neg {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddGroup (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] {f : Π₀ (i : ι), β i} :
                                                (-f).support = f.support
                                                theorem DFinsupp.support_smul {ι : Type u} {β : ιType v} [DecidableEq ι] {γ : Type w} [Semiring γ] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → Module γ (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] (b : γ) (v : Π₀ (i : ι), β i) :
                                                (b v).support v.support
                                                instance DFinsupp.instDecidableEq {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → DecidableEq (β i)] :
                                                DecidableEq (Π₀ (i : ι), β i)
                                                Equations
                                                noncomputable def DFinsupp.comapDomain {ι : Type u} {β : ιType v} {κ : Type u_1} [(i : ι) → Zero (β i)] (h : κι) (hh : Function.Injective h) (f : Π₀ (i : ι), β i) :
                                                Π₀ (k : κ), β (h k)

                                                Reindexing (and possibly removing) terms of a dfinsupp.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  @[simp]
                                                  theorem DFinsupp.comapDomain_apply {ι : Type u} {β : ιType v} {κ : Type u_1} [(i : ι) → Zero (β i)] (h : κι) (hh : Function.Injective h) (f : Π₀ (i : ι), β i) (k : κ) :
                                                  (DFinsupp.comapDomain h hh f) k = f (h k)
                                                  @[simp]
                                                  theorem DFinsupp.comapDomain_zero {ι : Type u} {β : ιType v} {κ : Type u_1} [(i : ι) → Zero (β i)] (h : κι) (hh : Function.Injective h) :
                                                  @[simp]
                                                  theorem DFinsupp.comapDomain_add {ι : Type u} {β : ιType v} {κ : Type u_1} [(i : ι) → AddZeroClass (β i)] (h : κι) (hh : Function.Injective h) (f : Π₀ (i : ι), β i) (g : Π₀ (i : ι), β i) :
                                                  @[simp]
                                                  theorem DFinsupp.comapDomain_smul {ι : Type u} {γ : Type w} {β : ιType v} {κ : Type u_1} [Monoid γ] [(i : ι) → AddMonoid (β i)] [(i : ι) → DistribMulAction γ (β i)] (h : κι) (hh : Function.Injective h) (r : γ) (f : Π₀ (i : ι), β i) :
                                                  @[simp]
                                                  theorem DFinsupp.comapDomain_single {ι : Type u} {β : ιType v} {κ : Type u_1} [DecidableEq ι] [DecidableEq κ] [(i : ι) → Zero (β i)] (h : κι) (hh : Function.Injective h) (k : κ) (x : β (h k)) :
                                                  def DFinsupp.comapDomain' {ι : Type u} {β : ιType v} {κ : Type u_1} [(i : ι) → Zero (β i)] (h : κι) {h' : ικ} (hh' : Function.LeftInverse h' h) (f : Π₀ (i : ι), β i) :
                                                  Π₀ (k : κ), β (h k)

                                                  A computable version of comap_domain when an explicit left inverse is provided.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For
                                                    @[simp]
                                                    theorem DFinsupp.comapDomain'_apply {ι : Type u} {β : ιType v} {κ : Type u_1} [(i : ι) → Zero (β i)] (h : κι) {h' : ικ} (hh' : Function.LeftInverse h' h) (f : Π₀ (i : ι), β i) (k : κ) :
                                                    (DFinsupp.comapDomain' h hh' f) k = f (h k)
                                                    @[simp]
                                                    theorem DFinsupp.comapDomain'_zero {ι : Type u} {β : ιType v} {κ : Type u_1} [(i : ι) → Zero (β i)] (h : κι) {h' : ικ} (hh' : Function.LeftInverse h' h) :
                                                    @[simp]
                                                    theorem DFinsupp.comapDomain'_add {ι : Type u} {β : ιType v} {κ : Type u_1} [(i : ι) → AddZeroClass (β i)] (h : κι) {h' : ικ} (hh' : Function.LeftInverse h' h) (f : Π₀ (i : ι), β i) (g : Π₀ (i : ι), β i) :
                                                    @[simp]
                                                    theorem DFinsupp.comapDomain'_smul {ι : Type u} {γ : Type w} {β : ιType v} {κ : Type u_1} [Monoid γ] [(i : ι) → AddMonoid (β i)] [(i : ι) → DistribMulAction γ (β i)] (h : κι) {h' : ικ} (hh' : Function.LeftInverse h' h) (r : γ) (f : Π₀ (i : ι), β i) :
                                                    @[simp]
                                                    theorem DFinsupp.comapDomain'_single {ι : Type u} {β : ιType v} {κ : Type u_1} [DecidableEq ι] [DecidableEq κ] [(i : ι) → Zero (β i)] (h : κι) {h' : ικ} (hh' : Function.LeftInverse h' h) (k : κ) (x : β (h k)) :
                                                    def DFinsupp.equivCongrLeft {ι : Type u} {β : ιType v} {κ : Type u_1} [(i : ι) → Zero (β i)] (h : ι κ) :
                                                    (Π₀ (i : ι), β i) Π₀ (k : κ), β (h.symm k)

                                                    Reindexing terms of a dfinsupp.

                                                    This is the dfinsupp version of Equiv.piCongrLeft'.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For
                                                      @[simp]
                                                      theorem DFinsupp.equivCongrLeft_apply {ι : Type u} {β : ιType v} {κ : Type u_1} [(i : ι) → Zero (β i)] (h : ι κ) (f : Π₀ (i : ι), β i) :
                                                      instance DFinsupp.hasAdd₂ {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [(i : ι) → (j : α i) → AddZeroClass (δ i j)] :
                                                      Add (Π₀ (i : ι) (j : α i), δ i j)
                                                      Equations
                                                      • DFinsupp.hasAdd₂ = inferInstance
                                                      instance DFinsupp.addZeroClass₂ {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [(i : ι) → (j : α i) → AddZeroClass (δ i j)] :
                                                      AddZeroClass (Π₀ (i : ι) (j : α i), δ i j)
                                                      Equations
                                                      • DFinsupp.addZeroClass₂ = inferInstance
                                                      instance DFinsupp.addMonoid₂ {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [(i : ι) → (j : α i) → AddMonoid (δ i j)] :
                                                      AddMonoid (Π₀ (i : ι) (j : α i), δ i j)
                                                      Equations
                                                      • DFinsupp.addMonoid₂ = inferInstance
                                                      instance DFinsupp.distribMulAction₂ {ι : Type u} {γ : Type w} {α : ιType u_2} {δ : (i : ι) → α iType v} [Monoid γ] [(i : ι) → (j : α i) → AddMonoid (δ i j)] [(i : ι) → (j : α i) → DistribMulAction γ (δ i j)] :
                                                      DistribMulAction γ (Π₀ (i : ι) (j : α i), δ i j)
                                                      Equations
                                                      • DFinsupp.distribMulAction₂ = DFinsupp.distribMulAction
                                                      def DFinsupp.sigmaCurry {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → (j : α i) → Zero (δ i j)] (f : Π₀ (i : (x : ι) × α x), δ i.fst i.snd) :
                                                      Π₀ (i : ι) (j : α i), δ i j

                                                      The natural map between Π₀ (i : Σ i, α i), δ i.1 i.2 and Π₀ i (j : α i), δ i j.

                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For
                                                        @[simp]
                                                        theorem DFinsupp.sigmaCurry_apply {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → (j : α i) → Zero (δ i j)] (f : Π₀ (i : (x : ι) × α x), δ i.fst i.snd) (i : ι) (j : α i) :
                                                        (f.sigmaCurry i) j = f i, j
                                                        @[simp]
                                                        theorem DFinsupp.sigmaCurry_zero {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → (j : α i) → Zero (δ i j)] :
                                                        @[simp]
                                                        theorem DFinsupp.sigmaCurry_add {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → (j : α i) → AddZeroClass (δ i j)] (f : Π₀ (i : (x : ι) × α x), δ i.fst i.snd) (g : Π₀ (i : (x : ι) × α x), δ i.fst i.snd) :
                                                        (f + g).sigmaCurry = f.sigmaCurry + g.sigmaCurry
                                                        @[simp]
                                                        theorem DFinsupp.sigmaCurry_smul {ι : Type u} {γ : Type w} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [Monoid γ] [(i : ι) → (j : α i) → AddMonoid (δ i j)] [(i : ι) → (j : α i) → DistribMulAction γ (δ i j)] (r : γ) (f : Π₀ (i : (x : ι) × α x), δ i.fst i.snd) :
                                                        (r f).sigmaCurry = r f.sigmaCurry
                                                        @[simp]
                                                        theorem DFinsupp.sigmaCurry_single {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → (j : α i) → Zero (δ i j)] (ij : (i : ι) × α i) (x : δ ij.fst ij.snd) :
                                                        (DFinsupp.single ij x).sigmaCurry = DFinsupp.single ij.fst (DFinsupp.single ij.snd x)
                                                        def DFinsupp.sigmaUncurry {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [(i : ι) → (j : α i) → Zero (δ i j)] [DecidableEq ι] (f : Π₀ (i : ι) (j : α i), δ i j) :
                                                        Π₀ (i : (x : ι) × α x), δ i.fst i.snd

                                                        The natural map between Π₀ i (j : α i), δ i j and Π₀ (i : Σ i, α i), δ i.1 i.2, inverse of curry.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        Instances For
                                                          @[simp]
                                                          theorem DFinsupp.sigmaUncurry_apply {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → (j : α i) → Zero (δ i j)] (f : Π₀ (i : ι) (j : α i), δ i j) (i : ι) (j : α i) :
                                                          f.sigmaUncurry i, j = (f i) j
                                                          @[simp]
                                                          theorem DFinsupp.sigmaUncurry_zero {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → (j : α i) → Zero (δ i j)] :
                                                          @[simp]
                                                          theorem DFinsupp.sigmaUncurry_add {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → (j : α i) → AddZeroClass (δ i j)] (f : Π₀ (i : ι) (j : α i), δ i j) (g : Π₀ (i : ι) (j : α i), δ i j) :
                                                          (f + g).sigmaUncurry = f.sigmaUncurry + g.sigmaUncurry
                                                          @[simp]
                                                          theorem DFinsupp.sigmaUncurry_smul {ι : Type u} {γ : Type w} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [Monoid γ] [(i : ι) → (j : α i) → AddMonoid (δ i j)] [(i : ι) → (j : α i) → DistribMulAction γ (δ i j)] (r : γ) (f : Π₀ (i : ι) (j : α i), δ i j) :
                                                          (r f).sigmaUncurry = r f.sigmaUncurry
                                                          @[simp]
                                                          theorem DFinsupp.sigmaUncurry_single {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → (j : α i) → Zero (δ i j)] [(i : ι) → DecidableEq (α i)] (i : ι) (j : α i) (x : δ i j) :
                                                          (DFinsupp.single i (DFinsupp.single j x)).sigmaUncurry = DFinsupp.single i, j x
                                                          def DFinsupp.sigmaCurryEquiv {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [(i : ι) → (j : α i) → Zero (δ i j)] [DecidableEq ι] :
                                                          (Π₀ (i : (x : ι) × α x), δ i.fst i.snd) Π₀ (i : ι) (j : α i), δ i j

                                                          The natural bijection between Π₀ (i : Σ i, α i), δ i.1 i.2 and Π₀ i (j : α i), δ i j.

                                                          This is the dfinsupp version of Equiv.piCurry.

                                                          Equations
                                                          • DFinsupp.sigmaCurryEquiv = { toFun := DFinsupp.sigmaCurry, invFun := DFinsupp.sigmaUncurry, left_inv := , right_inv := }
                                                          Instances For
                                                            def DFinsupp.extendWith {ι : Type u} {α : Option ιType v} [(i : Option ι) → Zero (α i)] (a : α none) (f : Π₀ (i : ι), α (some i)) :
                                                            Π₀ (i : Option ι), α i

                                                            Adds a term to a dfinsupp, making a dfinsupp indexed by an Option.

                                                            This is the dfinsupp version of Option.rec.

                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For
                                                              @[simp]
                                                              theorem DFinsupp.extendWith_none {ι : Type u} {α : Option ιType v} [(i : Option ι) → Zero (α i)] (f : Π₀ (i : ι), α (some i)) (a : α none) :
                                                              (DFinsupp.extendWith a f) none = a
                                                              @[simp]
                                                              theorem DFinsupp.extendWith_some {ι : Type u} {α : Option ιType v} [(i : Option ι) → Zero (α i)] (f : Π₀ (i : ι), α (some i)) (a : α none) (i : ι) :
                                                              (DFinsupp.extendWith a f) (some i) = f i
                                                              @[simp]
                                                              theorem DFinsupp.extendWith_single_zero {ι : Type u} {α : Option ιType v} [DecidableEq ι] [(i : Option ι) → Zero (α i)] (i : ι) (x : α (some i)) :
                                                              @[simp]
                                                              theorem DFinsupp.extendWith_zero {ι : Type u} {α : Option ιType v} [DecidableEq ι] [(i : Option ι) → Zero (α i)] (x : α none) :
                                                              noncomputable def DFinsupp.equivProdDFinsupp {ι : Type u} {α : Option ιType v} [(i : Option ι) → Zero (α i)] :
                                                              (Π₀ (i : Option ι), α i) α none × Π₀ (i : ι), α (some i)

                                                              Bijection obtained by separating the term of index none of a dfinsupp over Option ι.

                                                              This is the dfinsupp version of Equiv.piOptionEquivProd.

                                                              Equations
                                                              • One or more equations did not get rendered due to their size.
                                                              Instances For
                                                                @[simp]
                                                                theorem DFinsupp.equivProdDFinsupp_apply {ι : Type u} {α : Option ιType v} [(i : Option ι) → Zero (α i)] (f : Π₀ (i : Option ι), α i) :
                                                                DFinsupp.equivProdDFinsupp f = (f none, DFinsupp.comapDomain some f)
                                                                @[simp]
                                                                theorem DFinsupp.equivProdDFinsupp_symm_apply {ι : Type u} {α : Option ιType v} [(i : Option ι) → Zero (α i)] (f : α none × Π₀ (i : ι), α (some i)) :
                                                                DFinsupp.equivProdDFinsupp.symm f = DFinsupp.extendWith f.1 f.2
                                                                theorem DFinsupp.equivProdDFinsupp_add {ι : Type u} {α : Option ιType v} [(i : Option ι) → AddZeroClass (α i)] (f : Π₀ (i : Option ι), α i) (g : Π₀ (i : Option ι), α i) :
                                                                DFinsupp.equivProdDFinsupp (f + g) = DFinsupp.equivProdDFinsupp f + DFinsupp.equivProdDFinsupp g
                                                                theorem DFinsupp.equivProdDFinsupp_smul {ι : Type u} {γ : Type w} {α : Option ιType v} [Monoid γ] [(i : Option ι) → AddMonoid (α i)] [(i : Option ι) → DistribMulAction γ (α i)] (r : γ) (f : Π₀ (i : Option ι), α i) :
                                                                DFinsupp.equivProdDFinsupp (r f) = r DFinsupp.equivProdDFinsupp f
                                                                def DFinsupp.prod {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [CommMonoid γ] (f : Π₀ (i : ι), β i) (g : (i : ι) → β iγ) :
                                                                γ

                                                                DFinsupp.prod f g is the product of g i (f i) over the support of f.

                                                                Equations
                                                                • f.prod g = if.support, g i (f i)
                                                                Instances For
                                                                  def DFinsupp.sum {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommMonoid γ] (f : Π₀ (i : ι), β i) (g : (i : ι) → β iγ) :
                                                                  γ

                                                                  sum f g is the sum of g i (f i) over the support of f.

                                                                  Equations
                                                                  • f.sum g = if.support, g i (f i)
                                                                  Instances For
                                                                    @[simp]
                                                                    theorem map_dfinsupp_prod {ι : Type u} {β : ιType v} [DecidableEq ι] {R : Type u_1} {S : Type u_2} {H : Type u_3} [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [CommMonoid R] [CommMonoid S] [FunLike H R S] [MonoidHomClass H R S] (h : H) (f : Π₀ (i : ι), β i) (g : (i : ι) → β iR) :
                                                                    h (f.prod g) = f.prod fun (a : ι) (b : β a) => h (g a b)
                                                                    @[simp]
                                                                    theorem map_dfinsupp_sum {ι : Type u} {β : ιType v} [DecidableEq ι] {R : Type u_1} {S : Type u_2} {H : Type u_3} [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommMonoid R] [AddCommMonoid S] [FunLike H R S] [AddMonoidHomClass H R S] (h : H) (f : Π₀ (i : ι), β i) (g : (i : ι) → β iR) :
                                                                    h (f.sum g) = f.sum fun (a : ι) (b : β a) => h (g a b)
                                                                    theorem DFinsupp.prod_mapRange_index {ι : Type u} {γ : Type w} [DecidableEq ι] {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → Zero (β₁ i)] [(i : ι) → Zero (β₂ i)] [(i : ι) → (x : β₁ i) → Decidable (x 0)] [(i : ι) → (x : β₂ i) → Decidable (x 0)] [CommMonoid γ] {f : (i : ι) → β₁ iβ₂ i} {hf : ∀ (i : ι), f i 0 = 0} {g : Π₀ (i : ι), β₁ i} {h : (i : ι) → β₂ iγ} (h0 : ∀ (i : ι), h i 0 = 1) :
                                                                    (DFinsupp.mapRange f hf g).prod h = g.prod fun (i : ι) (b : β₁ i) => h i (f i b)
                                                                    theorem DFinsupp.sum_mapRange_index {ι : Type u} {γ : Type w} [DecidableEq ι] {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → Zero (β₁ i)] [(i : ι) → Zero (β₂ i)] [(i : ι) → (x : β₁ i) → Decidable (x 0)] [(i : ι) → (x : β₂ i) → Decidable (x 0)] [AddCommMonoid γ] {f : (i : ι) → β₁ iβ₂ i} {hf : ∀ (i : ι), f i 0 = 0} {g : Π₀ (i : ι), β₁ i} {h : (i : ι) → β₂ iγ} (h0 : ∀ (i : ι), h i 0 = 0) :
                                                                    (DFinsupp.mapRange f hf g).sum h = g.sum fun (i : ι) (b : β₁ i) => h i (f i b)
                                                                    theorem DFinsupp.prod_zero_index {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [CommMonoid γ] {h : (i : ι) → β iγ} :
                                                                    theorem DFinsupp.sum_zero_index {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommMonoid γ] {h : (i : ι) → β iγ} :
                                                                    theorem DFinsupp.prod_single_index {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [CommMonoid γ] {i : ι} {b : β i} {h : (i : ι) → β iγ} (h_zero : h i 0 = 1) :
                                                                    (DFinsupp.single i b).prod h = h i b
                                                                    theorem DFinsupp.sum_single_index {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommMonoid γ] {i : ι} {b : β i} {h : (i : ι) → β iγ} (h_zero : h i 0 = 0) :
                                                                    (DFinsupp.single i b).sum h = h i b
                                                                    theorem DFinsupp.prod_neg_index {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddGroup (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [CommMonoid γ] {g : Π₀ (i : ι), β i} {h : (i : ι) → β iγ} (h0 : ∀ (i : ι), h i 0 = 1) :
                                                                    (-g).prod h = g.prod fun (i : ι) (b : β i) => h i (-b)
                                                                    theorem DFinsupp.sum_neg_index {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddGroup (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommMonoid γ] {g : Π₀ (i : ι), β i} {h : (i : ι) → β iγ} (h0 : ∀ (i : ι), h i 0 = 0) :
                                                                    (-g).sum h = g.sum fun (i : ι) (b : β i) => h i (-b)
                                                                    theorem DFinsupp.prod_comm {γ : Type w} {ι₁ : Type u_3} {ι₂ : Type u_4} {β₁ : ι₁Type u_1} {β₂ : ι₂Type u_2} [DecidableEq ι₁] [DecidableEq ι₂] [(i : ι₁) → Zero (β₁ i)] [(i : ι₂) → Zero (β₂ i)] [(i : ι₁) → (x : β₁ i) → Decidable (x 0)] [(i : ι₂) → (x : β₂ i) → Decidable (x 0)] [CommMonoid γ] (f₁ : Π₀ (i : ι₁), β₁ i) (f₂ : Π₀ (i : ι₂), β₂ i) (h : (i : ι₁) → β₁ i(i : ι₂) → β₂ iγ) :
                                                                    (f₁.prod fun (i₁ : ι₁) (x₁ : β₁ i₁) => f₂.prod fun (i₂ : ι₂) (x₂ : β₂ i₂) => h i₁ x₁ i₂ x₂) = f₂.prod fun (i₂ : ι₂) (x₂ : β₂ i₂) => f₁.prod fun (i₁ : ι₁) (x₁ : β₁ i₁) => h i₁ x₁ i₂ x₂
                                                                    theorem DFinsupp.sum_comm {γ : Type w} {ι₁ : Type u_3} {ι₂ : Type u_4} {β₁ : ι₁Type u_1} {β₂ : ι₂Type u_2} [DecidableEq ι₁] [DecidableEq ι₂] [(i : ι₁) → Zero (β₁ i)] [(i : ι₂) → Zero (β₂ i)] [(i : ι₁) → (x : β₁ i) → Decidable (x 0)] [(i : ι₂) → (x : β₂ i) → Decidable (x 0)] [AddCommMonoid γ] (f₁ : Π₀ (i : ι₁), β₁ i) (f₂ : Π₀ (i : ι₂), β₂ i) (h : (i : ι₁) → β₁ i(i : ι₂) → β₂ iγ) :
                                                                    (f₁.sum fun (i₁ : ι₁) (x₁ : β₁ i₁) => f₂.sum fun (i₂ : ι₂) (x₂ : β₂ i₂) => h i₁ x₁ i₂ x₂) = f₂.sum fun (i₂ : ι₂) (x₂ : β₂ i₂) => f₁.sum fun (i₁ : ι₁) (x₁ : β₁ i₁) => h i₁ x₁ i₂ x₂
                                                                    @[simp]
                                                                    theorem DFinsupp.sum_apply {ι : Type u_1} {β : ιType v} {ι₁ : Type u₁} [DecidableEq ι₁] {β₁ : ι₁Type v₁} [(i₁ : ι₁) → Zero (β₁ i₁)] [(i : ι₁) → (x : β₁ i) → Decidable (x 0)] [(i : ι) → AddCommMonoid (β i)] {f : Π₀ (i₁ : ι₁), β₁ i₁} {g : (i₁ : ι₁) → β₁ i₁Π₀ (i : ι), β i} {i₂ : ι} :
                                                                    (f.sum g) i₂ = f.sum fun (i₁ : ι₁) (b : β₁ i₁) => (g i₁ b) i₂
                                                                    theorem DFinsupp.support_sum {ι : Type u} {β : ιType v} [DecidableEq ι] {ι₁ : Type u₁} [DecidableEq ι₁] {β₁ : ι₁Type v₁} [(i₁ : ι₁) → Zero (β₁ i₁)] [(i : ι₁) → (x : β₁ i) → Decidable (x 0)] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] {f : Π₀ (i₁ : ι₁), β₁ i₁} {g : (i₁ : ι₁) → β₁ i₁Π₀ (i : ι), β i} :
                                                                    (f.sum g).support f.support.biUnion fun (i : ι₁) => (g i (f i)).support
                                                                    @[simp]
                                                                    theorem DFinsupp.prod_one {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [CommMonoid γ] {f : Π₀ (i : ι), β i} :
                                                                    (f.prod fun (x : ι) (x : β x) => 1) = 1
                                                                    @[simp]
                                                                    theorem DFinsupp.sum_zero {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommMonoid γ] {f : Π₀ (i : ι), β i} :
                                                                    (f.sum fun (x : ι) (x : β x) => 0) = 0
                                                                    @[simp]
                                                                    theorem DFinsupp.prod_mul {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [CommMonoid γ] {f : Π₀ (i : ι), β i} {h₁ : (i : ι) → β iγ} {h₂ : (i : ι) → β iγ} :
                                                                    (f.prod fun (i : ι) (b : β i) => h₁ i b * h₂ i b) = f.prod h₁ * f.prod h₂
                                                                    @[simp]
                                                                    theorem DFinsupp.sum_add {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommMonoid γ] {f : Π₀ (i : ι), β i} {h₁ : (i : ι) → β iγ} {h₂ : (i : ι) → β iγ} :
                                                                    (f.sum fun (i : ι) (b : β i) => h₁ i b + h₂ i b) = f.sum h₁ + f.sum h₂
                                                                    @[simp]
                                                                    theorem DFinsupp.prod_inv {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [CommGroup γ] {f : Π₀ (i : ι), β i} {h : (i : ι) → β iγ} :
                                                                    (f.prod fun (i : ι) (b : β i) => (h i b)⁻¹) = (f.prod h)⁻¹
                                                                    @[simp]
                                                                    theorem DFinsupp.sum_neg {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommGroup γ] {f : Π₀ (i : ι), β i} {h : (i : ι) → β iγ} :
                                                                    (f.sum fun (i : ι) (b : β i) => -h i b) = -f.sum h
                                                                    theorem DFinsupp.prod_eq_one {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [CommMonoid γ] {f : Π₀ (i : ι), β i} {h : (i : ι) → β iγ} (hyp : ∀ (i : ι), h i (f i) = 1) :
                                                                    f.prod h = 1
                                                                    theorem DFinsupp.sum_eq_zero {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommMonoid γ] {f : Π₀ (i : ι), β i} {h : (i : ι) → β iγ} (hyp : ∀ (i : ι), h i (f i) = 0) :
                                                                    f.sum h = 0
                                                                    theorem DFinsupp.smul_sum {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] {α : Type u_1} [Monoid α] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommMonoid γ] [DistribMulAction α γ] {f : Π₀ (i : ι), β i} {h : (i : ι) → β iγ} {c : α} :
                                                                    c f.sum h = f.sum fun (a : ι) (b : β a) => c h a b
                                                                    theorem DFinsupp.prod_add_index {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [CommMonoid γ] {f : Π₀ (i : ι), β i} {g : Π₀ (i : ι), β i} {h : (i : ι) → β iγ} (h_zero : ∀ (i : ι), h i 0 = 1) (h_add : ∀ (i : ι) (b₁ b₂ : β i), h i (b₁ + b₂) = h i b₁ * h i b₂) :
                                                                    (f + g).prod h = f.prod h * g.prod h
                                                                    theorem DFinsupp.sum_add_index {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommMonoid γ] {f : Π₀ (i : ι), β i} {g : Π₀ (i : ι), β i} {h : (i : ι) → β iγ} (h_zero : ∀ (i : ι), h i 0 = 0) (h_add : ∀ (i : ι) (b₁ b₂ : β i), h i (b₁ + b₂) = h i b₁ + h i b₂) :
                                                                    (f + g).sum h = f.sum h + g.sum h
                                                                    theorem dfinsupp_prod_mem {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [CommMonoid γ] {S : Type u_1} [SetLike S γ] [SubmonoidClass S γ] (s : S) (f : Π₀ (i : ι), β i) (g : (i : ι) → β iγ) (h : ∀ (c : ι), f c 0g c (f c) s) :
                                                                    f.prod g s
                                                                    theorem dfinsupp_sum_mem {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommMonoid γ] {S : Type u_1} [SetLike S γ] [AddSubmonoidClass S γ] (s : S) (f : Π₀ (i : ι), β i) (g : (i : ι) → β iγ) (h : ∀ (c : ι), f c 0g c (f c) s) :
                                                                    f.sum g s
                                                                    @[simp]
                                                                    theorem DFinsupp.prod_eq_prod_fintype {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [Fintype ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [CommMonoid γ] (v : Π₀ (i : ι), β i) {f : (i : ι) → β iγ} (hf : ∀ (i : ι), f i 0 = 1) :
                                                                    v.prod f = i : ι, f i (DFinsupp.equivFunOnFintype v i)
                                                                    @[simp]
                                                                    theorem DFinsupp.sum_eq_sum_fintype {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [Fintype ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommMonoid γ] (v : Π₀ (i : ι), β i) {f : (i : ι) → β iγ} (hf : ∀ (i : ι), f i 0 = 0) :
                                                                    v.sum f = i : ι, f i (DFinsupp.equivFunOnFintype v i)
                                                                    @[simp]
                                                                    theorem DFinsupp.prod_eq_zero_iff {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [CommMonoidWithZero γ] [Nontrivial γ] [NoZeroDivisors γ] [(i : ι) → DecidableEq (β i)] {f : Π₀ (i : ι), β i} {g : (i : ι) → β iγ} :
                                                                    f.prod g = 0 if.support, g i (f i) = 0
                                                                    theorem DFinsupp.prod_ne_zero_iff {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [CommMonoidWithZero γ] [Nontrivial γ] [NoZeroDivisors γ] [(i : ι) → DecidableEq (β i)] {f : Π₀ (i : ι), β i} {g : (i : ι) → β iγ} :
                                                                    f.prod g 0 if.support, g i (f i) 0
                                                                    def DFinsupp.sumAddHom {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] [AddCommMonoid γ] (φ : (i : ι) → β i →+ γ) :
                                                                    (Π₀ (i : ι), β i) →+ γ

                                                                    When summing over an AddMonoidHom, the decidability assumption is not needed, and the result is also an AddMonoidHom.

                                                                    Equations
                                                                    • One or more equations did not get rendered due to their size.
                                                                    Instances For
                                                                      @[simp]
                                                                      theorem DFinsupp.sumAddHom_single {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] [AddCommMonoid γ] (φ : (i : ι) → β i →+ γ) (i : ι) (x : β i) :
                                                                      @[simp]
                                                                      theorem DFinsupp.sumAddHom_comp_single {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] [AddCommMonoid γ] (f : (i : ι) → β i →+ γ) (i : ι) :
                                                                      theorem DFinsupp.sumAddHom_apply {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommMonoid γ] (φ : (i : ι) → β i →+ γ) (f : Π₀ (i : ι), β i) :
                                                                      (DFinsupp.sumAddHom φ) f = f.sum fun (x : ι) => (φ x)

                                                                      While we didn't need decidable instances to define it, we do to reduce it to a sum

                                                                      theorem dfinsupp_sumAddHom_mem {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] [AddCommMonoid γ] {S : Type u_1} [SetLike S γ] [AddSubmonoidClass S γ] (s : S) (f : Π₀ (i : ι), β i) (g : (i : ι) → β i →+ γ) (h : ∀ (c : ι), f c 0(g c) (f c) s) :
                                                                      theorem AddSubmonoid.iSup_eq_mrange_dfinsupp_sumAddHom {ι : Type u} {γ : Type w} [DecidableEq ι] [AddCommMonoid γ] (S : ιAddSubmonoid γ) :
                                                                      iSup S = AddMonoidHom.mrange (DFinsupp.sumAddHom fun (i : ι) => (S i).subtype)

                                                                      The supremum of a family of commutative additive submonoids is equal to the range of DFinsupp.sumAddHom; that is, every element in the iSup can be produced from taking a finite number of non-zero elements of S i, coercing them to γ, and summing them.

                                                                      theorem AddSubmonoid.bsupr_eq_mrange_dfinsupp_sumAddHom {ι : Type u} {γ : Type w} [DecidableEq ι] (p : ιProp) [DecidablePred p] [AddCommMonoid γ] (S : ιAddSubmonoid γ) :
                                                                      ⨆ (i : ι), ⨆ (_ : p i), S i = AddMonoidHom.mrange ((DFinsupp.sumAddHom fun (i : ι) => (S i).subtype).comp (DFinsupp.filterAddMonoidHom (fun (i : ι) => (S i)) p))

                                                                      The bounded supremum of a family of commutative additive submonoids is equal to the range of DFinsupp.sumAddHom composed with DFinsupp.filterAddMonoidHom; that is, every element in the bounded iSup can be produced from taking a finite number of non-zero elements from the S i that satisfy p i, coercing them to γ, and summing them.

                                                                      theorem AddSubmonoid.mem_iSup_iff_exists_dfinsupp {ι : Type u} {γ : Type w} [DecidableEq ι] [AddCommMonoid γ] (S : ιAddSubmonoid γ) (x : γ) :
                                                                      x iSup S ∃ (f : Π₀ (i : ι), (S i)), (DFinsupp.sumAddHom fun (i : ι) => (S i).subtype) f = x
                                                                      theorem AddSubmonoid.mem_iSup_iff_exists_dfinsupp' {ι : Type u} {γ : Type w} [DecidableEq ι] [AddCommMonoid γ] (S : ιAddSubmonoid γ) [(i : ι) → (x : (S i)) → Decidable (x 0)] (x : γ) :
                                                                      x iSup S ∃ (f : Π₀ (i : ι), (S i)), (f.sum fun (x : ι) (xi : (S x)) => xi) = x

                                                                      A variant of AddSubmonoid.mem_iSup_iff_exists_dfinsupp with the RHS fully unfolded.

                                                                      theorem AddSubmonoid.mem_bsupr_iff_exists_dfinsupp {ι : Type u} {γ : Type w} [DecidableEq ι] (p : ιProp) [DecidablePred p] [AddCommMonoid γ] (S : ιAddSubmonoid γ) (x : γ) :
                                                                      x ⨆ (i : ι), ⨆ (_ : p i), S i ∃ (f : Π₀ (i : ι), (S i)), (DFinsupp.sumAddHom fun (i : ι) => (S i).subtype) (DFinsupp.filter p f) = x
                                                                      theorem DFinsupp.sumAddHom_comm {ι₁ : Type u_4} {ι₂ : Type u_5} {β₁ : ι₁Type u_1} {β₂ : ι₂Type u_2} {γ : Type u_3} [DecidableEq ι₁] [DecidableEq ι₂] [(i : ι₁) → AddZeroClass (β₁ i)] [(i : ι₂) → AddZeroClass (β₂ i)] [AddCommMonoid γ] (f₁ : Π₀ (i : ι₁), β₁ i) (f₂ : Π₀ (i : ι₂), β₂ i) (h : (i : ι₁) → (j : ι₂) → β₁ i →+ β₂ j →+ γ) :
                                                                      (DFinsupp.sumAddHom fun (i₂ : ι₂) => (DFinsupp.sumAddHom fun (i₁ : ι₁) => h i₁ i₂) f₁) f₂ = (DFinsupp.sumAddHom fun (i₁ : ι₁) => (DFinsupp.sumAddHom fun (i₂ : ι₂) => (h i₁ i₂).flip) f₂) f₁
                                                                      def DFinsupp.liftAddHom {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] [AddCommMonoid γ] :
                                                                      ((i : ι) → β i →+ γ) ≃+ ((Π₀ (i : ι), β i) →+ γ)

                                                                      The DFinsupp version of Finsupp.liftAddHom,

                                                                      Equations
                                                                      • DFinsupp.liftAddHom = { toFun := DFinsupp.sumAddHom, invFun := fun (F : (Π₀ (i : ι), β i) →+ γ) (i : ι) => F.comp (DFinsupp.singleAddHom β i), left_inv := , right_inv := , map_add' := }
                                                                      Instances For
                                                                        @[simp]
                                                                        theorem DFinsupp.liftAddHom_symm_apply {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] [AddCommMonoid γ] (F : (Π₀ (i : ι), β i) →+ γ) (i : ι) :
                                                                        DFinsupp.liftAddHom.symm F i = F.comp (DFinsupp.singleAddHom β i)
                                                                        @[simp]
                                                                        theorem DFinsupp.liftAddHom_apply {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] [AddCommMonoid γ] (φ : (i : ι) → β i →+ γ) :
                                                                        DFinsupp.liftAddHom φ = DFinsupp.sumAddHom φ
                                                                        @[simp]
                                                                        theorem DFinsupp.liftAddHom_singleAddHom {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddCommMonoid (β i)] :
                                                                        DFinsupp.liftAddHom (DFinsupp.singleAddHom β) = AddMonoidHom.id (Π₀ (i : ι), β i)

                                                                        The DFinsupp version of Finsupp.liftAddHom_singleAddHom,

                                                                        theorem DFinsupp.liftAddHom_apply_single {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] [AddCommMonoid γ] (f : (i : ι) → β i →+ γ) (i : ι) (x : β i) :
                                                                        (DFinsupp.liftAddHom f) (DFinsupp.single i x) = (f i) x

                                                                        The DFinsupp version of Finsupp.liftAddHom_apply_single,

                                                                        theorem DFinsupp.liftAddHom_comp_single {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] [AddCommMonoid γ] (f : (i : ι) → β i →+ γ) (i : ι) :
                                                                        (DFinsupp.liftAddHom f).comp (DFinsupp.singleAddHom β i) = f i

                                                                        The DFinsupp version of Finsupp.liftAddHom_comp_single,

                                                                        theorem DFinsupp.comp_liftAddHom {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] {δ : Type u_1} [(i : ι) → AddZeroClass (β i)] [AddCommMonoid γ] [AddCommMonoid δ] (g : γ →+ δ) (f : (i : ι) → β i →+ γ) :
                                                                        g.comp (DFinsupp.liftAddHom f) = DFinsupp.liftAddHom fun (a : ι) => g.comp (f a)

                                                                        The DFinsupp version of Finsupp.comp_liftAddHom,

                                                                        @[simp]
                                                                        theorem DFinsupp.sumAddHom_zero {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] [AddCommMonoid γ] :
                                                                        (DFinsupp.sumAddHom fun (i : ι) => 0) = 0
                                                                        @[simp]
                                                                        theorem DFinsupp.sumAddHom_add {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddZeroClass (β i)] [AddCommMonoid γ] (g : (i : ι) → β i →+ γ) (h : (i : ι) → β i →+ γ) :
                                                                        @[simp]
                                                                        theorem DFinsupp.sumAddHom_singleAddHom {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddCommMonoid (β i)] :
                                                                        theorem DFinsupp.comp_sumAddHom {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] {δ : Type u_1} [(i : ι) → AddZeroClass (β i)] [AddCommMonoid γ] [AddCommMonoid δ] (g : γ →+ δ) (f : (i : ι) → β i →+ γ) :
                                                                        g.comp (DFinsupp.sumAddHom f) = DFinsupp.sumAddHom fun (a : ι) => g.comp (f a)
                                                                        theorem DFinsupp.sum_sub_index {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → AddGroup (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommGroup γ] {f : Π₀ (i : ι), β i} {g : Π₀ (i : ι), β i} {h : (i : ι) → β iγ} (h_sub : ∀ (i : ι) (b₁ b₂ : β i), h i (b₁ - b₂) = h i b₁ - h i b₂) :
                                                                        (f - g).sum h = f.sum h - g.sum h
                                                                        theorem DFinsupp.prod_finset_sum_index {ι : Type u} {β : ιType v} [DecidableEq ι] {γ : Type w} {α : Type x} [(i : ι) → AddCommMonoid (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [CommMonoid γ] {s : Finset α} {g : αΠ₀ (i : ι), β i} {h : (i : ι) → β iγ} (h_zero : ∀ (i : ι), h i 0 = 1) (h_add : ∀ (i : ι) (b₁ b₂ : β i), h i (b₁ + b₂) = h i b₁ * h i b₂) :
                                                                        is, (g i).prod h = (∑ is, g i).prod h
                                                                        theorem DFinsupp.sum_finset_sum_index {ι : Type u} {β : ιType v} [DecidableEq ι] {γ : Type w} {α : Type x} [(i : ι) → AddCommMonoid (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommMonoid γ] {s : Finset α} {g : αΠ₀ (i : ι), β i} {h : (i : ι) → β iγ} (h_zero : ∀ (i : ι), h i 0 = 0) (h_add : ∀ (i : ι) (b₁ b₂ : β i), h i (b₁ + b₂) = h i b₁ + h i b₂) :
                                                                        is, (g i).sum h = (∑ is, g i).sum h
                                                                        theorem DFinsupp.prod_sum_index {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] {ι₁ : Type u₁} [DecidableEq ι₁] {β₁ : ι₁Type v₁} [(i₁ : ι₁) → Zero (β₁ i₁)] [(i : ι₁) → (x : β₁ i) → Decidable (x 0)] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [CommMonoid γ] {f : Π₀ (i₁ : ι₁), β₁ i₁} {g : (i₁ : ι₁) → β₁ i₁Π₀ (i : ι), β i} {h : (i : ι) → β iγ} (h_zero : ∀ (i : ι), h i 0 = 1) (h_add : ∀ (i : ι) (b₁ b₂ : β i), h i (b₁ + b₂) = h i b₁ * h i b₂) :
                                                                        (f.sum g).prod h = f.prod fun (i : ι₁) (b : β₁ i) => (g i b).prod h
                                                                        theorem DFinsupp.sum_sum_index {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] {ι₁ : Type u₁} [DecidableEq ι₁] {β₁ : ι₁Type v₁} [(i₁ : ι₁) → Zero (β₁ i₁)] [(i : ι₁) → (x : β₁ i) → Decidable (x 0)] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommMonoid γ] {f : Π₀ (i₁ : ι₁), β₁ i₁} {g : (i₁ : ι₁) → β₁ i₁Π₀ (i : ι), β i} {h : (i : ι) → β iγ} (h_zero : ∀ (i : ι), h i 0 = 0) (h_add : ∀ (i : ι) (b₁ b₂ : β i), h i (b₁ + b₂) = h i b₁ + h i b₂) :
                                                                        (f.sum g).sum h = f.sum fun (i : ι₁) (b : β₁ i) => (g i b).sum h
                                                                        @[simp]
                                                                        theorem DFinsupp.sum_single {ι : Type u} {β : ιType v} [DecidableEq ι] [(i : ι) → AddCommMonoid (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] {f : Π₀ (i : ι), β i} :
                                                                        f.sum DFinsupp.single = f
                                                                        theorem DFinsupp.prod_subtypeDomain_index {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [CommMonoid γ] {v : Π₀ (i : ι), β i} {p : ιProp} [DecidablePred p] {h : (i : ι) → β iγ} (hp : xv.support, p x) :
                                                                        ((DFinsupp.subtypeDomain p v).prod fun (i : Subtype p) (b : β i) => h (↑i) b) = v.prod h
                                                                        theorem DFinsupp.sum_subtypeDomain_index {ι : Type u} {γ : Type w} {β : ιType v} [DecidableEq ι] [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddCommMonoid γ] {v : Π₀ (i : ι), β i} {p : ιProp} [DecidablePred p] {h : (i : ι) → β iγ} (hp : xv.support, p x) :
                                                                        ((DFinsupp.subtypeDomain p v).sum fun (i : Subtype p) (b : β i) => h (↑i) b) = v.sum h
                                                                        theorem DFinsupp.subtypeDomain_sum {γ : Type w} {ι : Type u_1} {β : ιType v} [(i : ι) → AddCommMonoid (β i)] {s : Finset γ} {h : γΠ₀ (i : ι), β i} {p : ιProp} [DecidablePred p] :
                                                                        DFinsupp.subtypeDomain p (∑ cs, h c) = cs, DFinsupp.subtypeDomain p (h c)
                                                                        theorem DFinsupp.subtypeDomain_finsupp_sum {γ : Type w} {ι : Type u_1} {β : ιType v} {δ : γType x} [DecidableEq γ] [(c : γ) → Zero (δ c)] [(c : γ) → (x : δ c) → Decidable (x 0)] [(i : ι) → AddCommMonoid (β i)] {p : ιProp} [DecidablePred p] {s : Π₀ (c : γ), δ c} {h : (c : γ) → δ cΠ₀ (i : ι), β i} :
                                                                        DFinsupp.subtypeDomain p (s.sum h) = s.sum fun (c : γ) (d : δ c) => DFinsupp.subtypeDomain p (h c d)

                                                                        Bundled versions of DFinsupp.mapRange #

                                                                        The names should match the equivalent bundled Finsupp.mapRange definitions.

                                                                        theorem DFinsupp.mapRange_add {ι : Type u} {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → AddZeroClass (β₁ i)] [(i : ι) → AddZeroClass (β₂ i)] (f : (i : ι) → β₁ iβ₂ i) (hf : ∀ (i : ι), f i 0 = 0) (hf' : ∀ (i : ι) (x y : β₁ i), f i (x + y) = f i x + f i y) (g₁ : Π₀ (i : ι), β₁ i) (g₂ : Π₀ (i : ι), β₁ i) :
                                                                        DFinsupp.mapRange f hf (g₁ + g₂) = DFinsupp.mapRange f hf g₁ + DFinsupp.mapRange f hf g₂
                                                                        def DFinsupp.mapRange.addMonoidHom {ι : Type u} {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → AddZeroClass (β₁ i)] [(i : ι) → AddZeroClass (β₂ i)] (f : (i : ι) → β₁ i →+ β₂ i) :
                                                                        (Π₀ (i : ι), β₁ i) →+ Π₀ (i : ι), β₂ i

                                                                        DFinsupp.mapRange as an AddMonoidHom.

                                                                        Equations
                                                                        Instances For
                                                                          @[simp]
                                                                          theorem DFinsupp.mapRange.addMonoidHom_apply {ι : Type u} {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → AddZeroClass (β₁ i)] [(i : ι) → AddZeroClass (β₂ i)] (f : (i : ι) → β₁ i →+ β₂ i) (x : Π₀ (i : ι), β₁ i) :
                                                                          (DFinsupp.mapRange.addMonoidHom f) x = DFinsupp.mapRange (fun (i : ι) (x : β₁ i) => (f i) x) x
                                                                          @[simp]
                                                                          theorem DFinsupp.mapRange.addMonoidHom_id {ι : Type u} {β₂ : ιType v₂} [(i : ι) → AddZeroClass (β₂ i)] :
                                                                          (DFinsupp.mapRange.addMonoidHom fun (i : ι) => AddMonoidHom.id (β₂ i)) = AddMonoidHom.id (Π₀ (i : ι), β₂ i)
                                                                          theorem DFinsupp.mapRange.addMonoidHom_comp {ι : Type u} {β : ιType v} {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → AddZeroClass (β i)] [(i : ι) → AddZeroClass (β₁ i)] [(i : ι) → AddZeroClass (β₂ i)] (f : (i : ι) → β₁ i →+ β₂ i) (f₂ : (i : ι) → β i →+ β₁ i) :
                                                                          def DFinsupp.mapRange.addEquiv {ι : Type u} {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → AddZeroClass (β₁ i)] [(i : ι) → AddZeroClass (β₂ i)] (e : (i : ι) → β₁ i ≃+ β₂ i) :
                                                                          (Π₀ (i : ι), β₁ i) ≃+ Π₀ (i : ι), β₂ i

                                                                          DFinsupp.mapRange.addMonoidHom as an AddEquiv.

                                                                          Equations
                                                                          • One or more equations did not get rendered due to their size.
                                                                          Instances For
                                                                            @[simp]
                                                                            theorem DFinsupp.mapRange.addEquiv_apply {ι : Type u} {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → AddZeroClass (β₁ i)] [(i : ι) → AddZeroClass (β₂ i)] (e : (i : ι) → β₁ i ≃+ β₂ i) (x : Π₀ (i : ι), β₁ i) :
                                                                            (DFinsupp.mapRange.addEquiv e) x = DFinsupp.mapRange (fun (i : ι) (x : β₁ i) => (e i) x) x
                                                                            @[simp]
                                                                            theorem DFinsupp.mapRange.addEquiv_refl {ι : Type u} {β₁ : ιType v₁} [(i : ι) → AddZeroClass (β₁ i)] :
                                                                            (DFinsupp.mapRange.addEquiv fun (i : ι) => AddEquiv.refl (β₁ i)) = AddEquiv.refl (Π₀ (i : ι), β₁ i)
                                                                            theorem DFinsupp.mapRange.addEquiv_trans {ι : Type u} {β : ιType v} {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → AddZeroClass (β i)] [(i : ι) → AddZeroClass (β₁ i)] [(i : ι) → AddZeroClass (β₂ i)] (f : (i : ι) → β i ≃+ β₁ i) (f₂ : (i : ι) → β₁ i ≃+ β₂ i) :
                                                                            (DFinsupp.mapRange.addEquiv fun (i : ι) => (f i).trans (f₂ i)) = (DFinsupp.mapRange.addEquiv f).trans (DFinsupp.mapRange.addEquiv f₂)
                                                                            @[simp]
                                                                            theorem DFinsupp.mapRange.addEquiv_symm {ι : Type u} {β₁ : ιType v₁} {β₂ : ιType v₂} [(i : ι) → AddZeroClass (β₁ i)] [(i : ι) → AddZeroClass (β₂ i)] (e : (i : ι) → β₁ i ≃+ β₂ i) :
                                                                            (DFinsupp.mapRange.addEquiv e).symm = DFinsupp.mapRange.addEquiv fun (i : ι) => (e i).symm

                                                                            Product and sum lemmas for bundled morphisms. #

                                                                            In this section, we provide analogues of AddMonoidHom.map_sum, AddMonoidHom.coe_finset_sum, and AddMonoidHom.finset_sum_apply for DFinsupp.sum and DFinsupp.sumAddHom instead of Finset.sum.

                                                                            We provide these for AddMonoidHom, MonoidHom, RingHom, AddEquiv, and MulEquiv.

                                                                            Lemmas for LinearMap and LinearEquiv are in another file.

                                                                            @[simp]
                                                                            theorem MonoidHom.coe_dfinsupp_prod {ι : Type u} {β : ιType v} [DecidableEq ι] {R : Type u_1} {S : Type u_2} [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [Monoid R] [CommMonoid S] (f : Π₀ (i : ι), β i) (g : (i : ι) → β iR →* S) :
                                                                            (f.prod g) = f.prod fun (a : ι) (b : β a) => (g a b)
                                                                            @[simp]
                                                                            theorem AddMonoidHom.coe_dfinsupp_sum {ι : Type u} {β : ιType v} [DecidableEq ι] {R : Type u_1} {S : Type u_2} [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddMonoid R] [AddCommMonoid S] (f : Π₀ (i : ι), β i) (g : (i : ι) → β iR →+ S) :
                                                                            (f.sum g) = f.sum fun (a : ι) (b : β a) => (g a b)
                                                                            theorem MonoidHom.dfinsupp_prod_apply {ι : Type u} {β : ιType v} [DecidableEq ι] {R : Type u_1} {S : Type u_2} [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [Monoid R] [CommMonoid S] (f : Π₀ (i : ι), β i) (g : (i : ι) → β iR →* S) (r : R) :
                                                                            (f.prod g) r = f.prod fun (a : ι) (b : β a) => (g a b) r
                                                                            theorem AddMonoidHom.dfinsupp_sum_apply {ι : Type u} {β : ιType v} [DecidableEq ι] {R : Type u_1} {S : Type u_2} [(i : ι) → Zero (β i)] [(i : ι) → (x : β i) → Decidable (x 0)] [AddMonoid R] [AddCommMonoid S] (f : Π₀ (i : ι), β i) (g : (i : ι) → β iR →+ S) (r : R) :
                                                                            (f.sum g) r = f.sum fun (a : ι) (b : β a) => (g a b) r

                                                                            The above lemmas, repeated for DFinsupp.sumAddHom.

                                                                            @[simp]
                                                                            theorem AddMonoidHom.map_dfinsupp_sumAddHom {ι : Type u} {β : ιType v} [DecidableEq ι] {R : Type u_1} {S : Type u_2} [AddCommMonoid R] [AddCommMonoid S] [(i : ι) → AddZeroClass (β i)] (h : R →+ S) (f : Π₀ (i : ι), β i) (g : (i : ι) → β i →+ R) :
                                                                            h ((DFinsupp.sumAddHom g) f) = (DFinsupp.sumAddHom fun (i : ι) => h.comp (g i)) f
                                                                            theorem AddMonoidHom.dfinsupp_sumAddHom_apply {ι : Type u} {β : ιType v} [DecidableEq ι] {R : Type u_1} {S : Type u_2} [AddZeroClass R] [AddCommMonoid S] [(i : ι) → AddZeroClass (β i)] (f : Π₀ (i : ι), β i) (g : (i : ι) → β i →+ R →+ S) (r : R) :
                                                                            ((DFinsupp.sumAddHom g) f) r = (DFinsupp.sumAddHom fun (i : ι) => (AddMonoidHom.eval r).comp (g i)) f
                                                                            @[simp]
                                                                            theorem AddMonoidHom.coe_dfinsupp_sumAddHom {ι : Type u} {β : ιType v} [DecidableEq ι] {R : Type u_1} {S : Type u_2} [AddZeroClass R] [AddCommMonoid S] [(i : ι) → AddZeroClass (β i)] (f : Π₀ (i : ι), β i) (g : (i : ι) → β i →+ R →+ S) :
                                                                            ((DFinsupp.sumAddHom g) f) = (DFinsupp.sumAddHom fun (i : ι) => (AddMonoidHom.coeFn R S).comp (g i)) f
                                                                            @[simp]
                                                                            theorem RingHom.map_dfinsupp_sumAddHom {ι : Type u} {β : ιType v} [DecidableEq ι] {R : Type u_1} {S : Type u_2} [NonAssocSemiring R] [NonAssocSemiring S] [(i : ι) → AddZeroClass (β i)] (h : R →+* S) (f : Π₀ (i : ι), β i) (g : (i : ι) → β i →+ R) :
                                                                            h ((DFinsupp.sumAddHom g) f) = (DFinsupp.sumAddHom fun (i : ι) => h.toAddMonoidHom.comp (g i)) f
                                                                            @[simp]
                                                                            theorem AddEquiv.map_dfinsupp_sumAddHom {ι : Type u} {β : ιType v} [DecidableEq ι] {R : Type u_1} {S : Type u_2} [AddCommMonoid R] [AddCommMonoid S] [(i : ι) → AddZeroClass (β i)] (h : R ≃+ S) (f : Π₀ (i : ι), β i) (g : (i : ι) → β i →+ R) :
                                                                            h ((DFinsupp.sumAddHom g) f) = (DFinsupp.sumAddHom fun (i : ι) => h.toAddMonoidHom.comp (g i)) f
                                                                            instance DFinsupp.fintype {ι : Type u_1} {π : ιType u_2} [DecidableEq ι] [(i : ι) → Zero (π i)] [Fintype ι] [(i : ι) → Fintype (π i)] :
                                                                            Fintype (Π₀ (i : ι), π i)
                                                                            Equations
                                                                            • DFinsupp.fintype = Fintype.ofEquiv ((i : ι) → π i) DFinsupp.equivFunOnFintype.symm
                                                                            instance DFinsupp.infinite_of_left {ι : Type u_1} {π : ιType u_2} [∀ (i : ι), Nontrivial (π i)] [(i : ι) → Zero (π i)] [Infinite ι] :
                                                                            Infinite (Π₀ (i : ι), π i)
                                                                            Equations
                                                                            • =
                                                                            theorem DFinsupp.infinite_of_exists_right {ι : Type u_1} {π : ιType u_2} (i : ι) [Infinite (π i)] [(i : ι) → Zero (π i)] :
                                                                            Infinite (Π₀ (i : ι), π i)

                                                                            See DFinsupp.infinite_of_right for this in instance form, with the drawback that it needs all π i to be infinite.

                                                                            instance DFinsupp.infinite_of_right {ι : Type u_1} {π : ιType u_2} [∀ (i : ι), Infinite (π i)] [(i : ι) → Zero (π i)] [Nonempty ι] :
                                                                            Infinite (Π₀ (i : ι), π i)

                                                                            See DFinsupp.infinite_of_exists_right for the case that only one π ι is infinite.

                                                                            Equations
                                                                            • =