Documentation

Mathlib.Order.SetNotation

Notation classes for set supremum and infimum #

In this file we introduce notation for indexed suprema, infima, unions, and intersections.

Main definitions #

Notation #

class SupSet (α : Type u_1) :
Type u_1

Class for the sSup operator

  • sSup : Set αα

    Supremum of a set

Instances
    class InfSet (α : Type u_1) :
    Type u_1

    Class for the sInf operator

    • sInf : Set αα

      Infimum of a set

    Instances
      def iSup {α : Type u} {ι : Sort v} [SupSet α] (s : ια) :
      α

      Indexed supremum

      Equations
      Instances For
        def iInf {α : Type u} {ι : Sort v} [InfSet α] (s : ια) :
        α

        Indexed infimum

        Equations
        Instances For
          @[instance 50]
          instance infSet_to_nonempty (α : Type u_1) [InfSet α] :
          Equations
          • =
          @[instance 50]
          instance supSet_to_nonempty (α : Type u_1) [SupSet α] :
          Equations
          • =

          Delaborator for indexed supremum.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            Delaborator for indexed infimum.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              instance Set.instInfSet {α : Type u} :
              InfSet (Set α)
              Equations
              • Set.instInfSet = { sInf := fun (s : Set (Set α)) => {a : α | ∀ (t : Set α), t sa t} }
              instance Set.instSupSet {α : Type u} :
              SupSet (Set α)
              Equations
              • Set.instSupSet = { sSup := fun (s : Set (Set α)) => {a : α | ∃ (t : Set α), t s a t} }
              def Set.sInter {α : Type u} (S : Set (Set α)) :
              Set α

              Intersection of a set of sets.

              Equations
              Instances For
                def Set.sUnion {α : Type u} (S : Set (Set α)) :
                Set α

                Union of a set of sets.

                Equations
                Instances For
                  @[simp]
                  theorem Set.mem_sInter {α : Type u} {x : α} {S : Set (Set α)} :
                  x ⋂₀ S ∀ (t : Set α), t Sx t
                  @[simp]
                  theorem Set.mem_sUnion {α : Type u} {x : α} {S : Set (Set α)} :
                  x ⋃₀ S ∃ (t : Set α), t S x t
                  def Set.iUnion {α : Type u} {ι : Sort v} (s : ιSet α) :
                  Set α

                  Indexed union of a family of sets

                  Equations
                  Instances For
                    def Set.iInter {α : Type u} {ι : Sort v} (s : ιSet α) :
                    Set α

                    Indexed intersection of a family of sets

                    Equations
                    Instances For

                      Delaborator for indexed unions.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        Delaborator for indexed intersections.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[simp]
                          theorem Set.mem_iUnion {α : Type u} {ι : Sort v} {x : α} {s : ιSet α} :
                          x ⋃ (i : ι), s i ∃ (i : ι), x s i
                          @[simp]
                          theorem Set.mem_iInter {α : Type u} {ι : Sort v} {x : α} {s : ιSet α} :
                          x ⋂ (i : ι), s i ∀ (i : ι), x s i
                          @[simp]
                          theorem Set.sSup_eq_sUnion {α : Type u} (S : Set (Set α)) :
                          @[simp]
                          theorem Set.sInf_eq_sInter {α : Type u} (S : Set (Set α)) :
                          @[simp]
                          theorem Set.iSup_eq_iUnion {α : Type u} {ι : Sort v} (s : ιSet α) :
                          @[simp]
                          theorem Set.iInf_eq_iInter {α : Type u} {ι : Sort v} (s : ιSet α) :