Documentation

Mathlib.Algebra.GroupWithZero.Action.Defs

Definitions of group actions #

This file defines a hierarchy of group action type-classes on top of the previously defined notation classes SMul and its additive version VAdd:

The hierarchy is extended further by Module, defined elsewhere.

Also provided are typeclasses for faithful and transitive actions, and typeclasses regarding the interaction of different group actions,

Notation #

Implementation details #

This file should avoid depending on other parts of GroupTheory, to avoid import cycles. More sophisticated lemmas belong in GroupTheory.GroupAction.

Tags #

group action

Monoid.toMulAction is faithful on nontrivial cancellative monoids with zero.

Equations
  • =
@[simp]
theorem inv_smul_smul₀ {α : Type u_5} {β : Type u_6} [GroupWithZero α] [MulAction α β] {a : α} (ha : a 0) (x : β) :
a⁻¹ a x = x
@[simp]
theorem smul_inv_smul₀ {α : Type u_5} {β : Type u_6} [GroupWithZero α] [MulAction α β] {a : α} (ha : a 0) (x : β) :
a a⁻¹ x = x
theorem inv_smul_eq_iff₀ {α : Type u_5} {β : Type u_6} [GroupWithZero α] [MulAction α β] {a : α} (ha : a 0) {x : β} {y : β} :
a⁻¹ x = y x = a y
theorem eq_inv_smul_iff₀ {α : Type u_5} {β : Type u_6} [GroupWithZero α] [MulAction α β] {a : α} (ha : a 0) {x : β} {y : β} :
x = a⁻¹ y a x = y
@[simp]
theorem Commute.smul_right_iff₀ {α : Type u_5} {β : Type u_6} [GroupWithZero α] [MulAction α β] {a : α} [Mul β] [SMulCommClass α β β] [IsScalarTower α β β] {x : β} {y : β} (ha : a 0) :
Commute x (a y) Commute x y
@[simp]
theorem Commute.smul_left_iff₀ {α : Type u_5} {β : Type u_6} [GroupWithZero α] [MulAction α β] {a : α} [Mul β] [SMulCommClass α β β] [IsScalarTower α β β] {x : β} {y : β} (ha : a 0) :
Commute (a x) y Commute x y
def Equiv.smulRight {α : Type u_5} {β : Type u_6} [GroupWithZero α] [MulAction α β] {a : α} (ha : a 0) :
β β

Right scalar multiplication as an order isomorphism.

Equations
Instances For
    @[simp]
    theorem Equiv.smulRight_symm_apply {α : Type u_5} {β : Type u_6} [GroupWithZero α] [MulAction α β] {a : α} (ha : a 0) (b : β) :
    (Equiv.smulRight ha).symm b = a⁻¹ b
    @[simp]
    theorem Equiv.smulRight_apply {α : Type u_5} {β : Type u_6} [GroupWithZero α] [MulAction α β] {a : α} (ha : a 0) (b : β) :
    (Equiv.smulRight ha) b = a b
    class SMulZeroClass (M : Type u_7) (A : Type u_8) [Zero A] extends SMul :
    Type (max u_7 u_8)

    Typeclass for scalar multiplication that preserves 0 on the right.

    • smul : MAA
    • smul_zero : ∀ (a : M), a 0 = 0

      Multiplying 0 by a scalar gives 0

    Instances
      theorem SMulZeroClass.smul_zero {M : Type u_7} {A : Type u_8} :
      ∀ {inst : Zero A} [self : SMulZeroClass M A] (a : M), a 0 = 0

      Multiplying 0 by a scalar gives 0

      @[simp]
      theorem smul_zero {M : Type u_1} {A : Type u_3} [Zero A] [SMulZeroClass M A] (a : M) :
      a 0 = 0
      theorem smul_ite_zero {M : Type u_1} {A : Type u_3} [Zero A] [SMulZeroClass M A] (p : Prop) [Decidable p] (a : M) (b : A) :
      (a if p then b else 0) = if p then a b else 0
      theorem smul_eq_zero_of_right {M : Type u_1} {A : Type u_3} [Zero A] [SMulZeroClass M A] (a : M) {b : A} (h : b = 0) :
      a b = 0
      theorem right_ne_zero_of_smul {M : Type u_1} {A : Type u_3} [Zero A] [SMulZeroClass M A] {a : M} {b : A} :
      a b 0b 0
      @[reducible, inline]
      abbrev Function.Injective.smulZeroClass {M : Type u_1} {A : Type u_3} {B : Type u_4} [Zero A] [SMulZeroClass M A] [Zero B] [SMul M B] (f : ZeroHom B A) (hf : Function.Injective f) (smul : ∀ (c : M) (x : B), f (c x) = c f x) :

      Pullback a zero-preserving scalar multiplication along an injective zero-preserving map. See note [reducible non-instances].

      Equations
      Instances For
        @[reducible, inline]
        abbrev ZeroHom.smulZeroClass {M : Type u_1} {A : Type u_3} {B : Type u_4} [Zero A] [SMulZeroClass M A] [Zero B] [SMul M B] (f : ZeroHom A B) (smul : ∀ (c : M) (x : A), f (c x) = c f x) :

        Pushforward a zero-preserving scalar multiplication along a zero-preserving map. See note [reducible non-instances].

        Equations
        Instances For
          @[reducible, inline]
          abbrev Function.Surjective.smulZeroClassLeft {R : Type u_7} {S : Type u_8} {M : Type u_9} [Zero M] [SMulZeroClass R M] [SMul S M] (f : RS) (hf : Function.Surjective f) (hsmul : ∀ (c : R) (x : M), f c x = c x) :

          Push forward the multiplication of R on M along a compatible surjective map f : R → S.

          See also Function.Surjective.distribMulActionLeft.

          Equations
          Instances For
            @[reducible, inline]
            abbrev SMulZeroClass.compFun {M : Type u_1} {N : Type u_2} (A : Type u_3) [Zero A] [SMulZeroClass M A] (f : NM) :

            Compose a SMulZeroClass with a function, with scalar multiplication f r' • m. See note [reducible non-instances].

            Equations
            Instances For
              def SMulZeroClass.toZeroHom {M : Type u_1} (A : Type u_3) [Zero A] [SMulZeroClass M A] (x : M) :

              Each element of the scalars defines a zero-preserving map.

              Equations
              Instances For
                @[simp]
                theorem SMulZeroClass.toZeroHom_apply {M : Type u_1} (A : Type u_3) [Zero A] [SMulZeroClass M A] (x : M) :
                ∀ (x_1 : A), (SMulZeroClass.toZeroHom A x) x_1 = x x_1
                class DistribSMul (M : Type u_7) (A : Type u_8) [AddZeroClass A] extends SMulZeroClass :
                Type (max u_7 u_8)

                Typeclass for scalar multiplication that preserves 0 and + on the right.

                This is exactly DistribMulAction without the MulAction part.

                • smul : MAA
                • smul_zero : ∀ (a : M), a 0 = 0
                • smul_add : ∀ (a : M) (x y : A), a (x + y) = a x + a y

                  Scalar multiplication distributes across addition

                Instances
                  theorem DistribSMul.ext {M : Type u_7} {A : Type u_8} :
                  ∀ {inst : AddZeroClass A} {x y : DistribSMul M A}, SMul.smul = SMul.smulx = y
                  theorem DistribSMul.smul_add {M : Type u_7} {A : Type u_8} :
                  ∀ {inst : AddZeroClass A} [self : DistribSMul M A] (a : M) (x y : A), a (x + y) = a x + a y

                  Scalar multiplication distributes across addition

                  theorem smul_add {M : Type u_1} {A : Type u_3} [AddZeroClass A] [DistribSMul M A] (a : M) (b₁ : A) (b₂ : A) :
                  a (b₁ + b₂) = a b₁ + a b₂
                  instance AddMonoidHom.smulZeroClass {M : Type u_1} {A : Type u_3} {B : Type u_4} [AddZeroClass A] [DistribSMul M A] [AddZeroClass B] :
                  Equations
                  @[reducible, inline]
                  abbrev Function.Injective.distribSMul {M : Type u_1} {A : Type u_3} {B : Type u_4} [AddZeroClass A] [DistribSMul M A] [AddZeroClass B] [SMul M B] (f : B →+ A) (hf : Function.Injective f) (smul : ∀ (c : M) (x : B), f (c x) = c f x) :

                  Pullback a distributive scalar multiplication along an injective additive monoid homomorphism. See note [reducible non-instances].

                  Equations
                  Instances For
                    @[reducible, inline]
                    abbrev Function.Surjective.distribSMul {M : Type u_1} {A : Type u_3} {B : Type u_4} [AddZeroClass A] [DistribSMul M A] [AddZeroClass B] [SMul M B] (f : A →+ B) (hf : Function.Surjective f) (smul : ∀ (c : M) (x : A), f (c x) = c f x) :

                    Pushforward a distributive scalar multiplication along a surjective additive monoid homomorphism. See note [reducible non-instances].

                    Equations
                    Instances For
                      @[reducible, inline]
                      abbrev Function.Surjective.distribSMulLeft {R : Type u_7} {S : Type u_8} {M : Type u_9} [AddZeroClass M] [DistribSMul R M] [SMul S M] (f : RS) (hf : Function.Surjective f) (hsmul : ∀ (c : R) (x : M), f c x = c x) :

                      Push forward the multiplication of R on M along a compatible surjective map f : R → S.

                      See also Function.Surjective.distribMulActionLeft.

                      Equations
                      Instances For
                        @[reducible, inline]
                        abbrev DistribSMul.compFun {M : Type u_1} {N : Type u_2} (A : Type u_3) [AddZeroClass A] [DistribSMul M A] (f : NM) :

                        Compose a DistribSMul with a function, with scalar multiplication f r' • m. See note [reducible non-instances].

                        Equations
                        Instances For
                          def DistribSMul.toAddMonoidHom {M : Type u_1} (A : Type u_3) [AddZeroClass A] [DistribSMul M A] (x : M) :
                          A →+ A

                          Each element of the scalars defines an additive monoid homomorphism.

                          Equations
                          Instances For
                            @[simp]
                            theorem DistribSMul.toAddMonoidHom_apply {M : Type u_1} (A : Type u_3) [AddZeroClass A] [DistribSMul M A] (x : M) :
                            ∀ (x2 : A), (DistribSMul.toAddMonoidHom A x) x2 = (fun (x1 : M) (x2 : A) => x1 x2) x x2
                            class DistribMulAction (M : Type u_7) (A : Type u_8) [Monoid M] [AddMonoid A] extends MulAction :
                            Type (max u_7 u_8)

                            Typeclass for multiplicative actions on additive structures. This generalizes group modules.

                            • smul : MAA
                            • one_smul : ∀ (b : A), 1 b = b
                            • mul_smul : ∀ (x y : M) (b : A), (x * y) b = x y b
                            • smul_zero : ∀ (a : M), a 0 = 0

                              Multiplying 0 by a scalar gives 0

                            • smul_add : ∀ (a : M) (x y : A), a (x + y) = a x + a y

                              Scalar multiplication distributes across addition

                            Instances
                              theorem DistribMulAction.ext {M : Type u_7} {A : Type u_8} :
                              ∀ {inst : Monoid M} {inst_1 : AddMonoid A} {x y : DistribMulAction M A}, SMul.smul = SMul.smulx = y
                              theorem DistribMulAction.smul_zero {M : Type u_7} {A : Type u_8} :
                              ∀ {inst : Monoid M} {inst_1 : AddMonoid A} [self : DistribMulAction M A] (a : M), a 0 = 0

                              Multiplying 0 by a scalar gives 0

                              theorem DistribMulAction.smul_add {M : Type u_7} {A : Type u_8} :
                              ∀ {inst : Monoid M} {inst_1 : AddMonoid A} [self : DistribMulAction M A] (a : M) (x y : A), a (x + y) = a x + a y

                              Scalar multiplication distributes across addition

                              @[instance 100]
                              instance DistribMulAction.toDistribSMul {M : Type u_1} {A : Type u_3} [Monoid M] [AddMonoid A] [DistribMulAction M A] :
                              Equations

                              Since Lean 3 does not have definitional eta for structures, we have to make sure that the definition of DistribMulAction.toDistribSMul was done correctly, and the two paths from DistribMulAction to SMul are indeed definitionally equal.

                              @[reducible, inline]
                              abbrev Function.Injective.distribMulAction {M : Type u_1} {A : Type u_3} {B : Type u_4} [Monoid M] [AddMonoid A] [DistribMulAction M A] [AddMonoid B] [SMul M B] (f : B →+ A) (hf : Function.Injective f) (smul : ∀ (c : M) (x : B), f (c x) = c f x) :

                              Pullback a distributive multiplicative action along an injective additive monoid homomorphism. See note [reducible non-instances].

                              Equations
                              Instances For
                                @[reducible, inline]
                                abbrev Function.Surjective.distribMulAction {M : Type u_1} {A : Type u_3} {B : Type u_4} [Monoid M] [AddMonoid A] [DistribMulAction M A] [AddMonoid B] [SMul M B] (f : A →+ B) (hf : Function.Surjective f) (smul : ∀ (c : M) (x : A), f (c x) = c f x) :

                                Pushforward a distributive multiplicative action along a surjective additive monoid homomorphism. See note [reducible non-instances].

                                Equations
                                Instances For
                                  @[reducible, inline]
                                  abbrev Function.Surjective.distribMulActionLeft {R : Type u_7} {S : Type u_8} {M : Type u_9} [Monoid R] [AddMonoid M] [DistribMulAction R M] [Monoid S] [SMul S M] (f : R →* S) (hf : Function.Surjective f) (hsmul : ∀ (c : R) (x : M), f c x = c x) :

                                  Push forward the action of R on M along a compatible surjective map f : R →* S.

                                  See also Function.Surjective.mulActionLeft and Function.Surjective.moduleLeft.

                                  Equations
                                  Instances For
                                    @[reducible, inline]
                                    abbrev DistribMulAction.compHom {M : Type u_1} {N : Type u_2} (A : Type u_3) [Monoid M] [AddMonoid A] [DistribMulAction M A] [Monoid N] (f : N →* M) :

                                    Compose a DistribMulAction with a MonoidHom, with action f r' • m. See note [reducible non-instances].

                                    Equations
                                    Instances For
                                      def DistribMulAction.toAddMonoidHom {M : Type u_1} (A : Type u_3) [Monoid M] [AddMonoid A] [DistribMulAction M A] (x : M) :
                                      A →+ A

                                      Each element of the monoid defines an additive monoid homomorphism.

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem DistribMulAction.toAddMonoidHom_apply {M : Type u_1} (A : Type u_3) [Monoid M] [AddMonoid A] [DistribMulAction M A] (x : M) :
                                        ∀ (x2 : A), (DistribMulAction.toAddMonoidHom A x) x2 = x x2

                                        Each element of the monoid defines an additive monoid homomorphism.

                                        Equations
                                        Instances For
                                          instance AddMonoid.nat_smulCommClass (M : Type u_1) (A : Type u_3) [Monoid M] [AddMonoid A] [DistribMulAction M A] :
                                          Equations
                                          • =
                                          Equations
                                          • =
                                          instance AddGroup.int_smulCommClass {M : Type u_1} {A : Type u_3} [Monoid M] [AddGroup A] [DistribMulAction M A] :
                                          Equations
                                          • =
                                          instance AddGroup.int_smulCommClass' {M : Type u_1} {A : Type u_3} [Monoid M] [AddGroup A] [DistribMulAction M A] :
                                          Equations
                                          • =
                                          @[simp]
                                          theorem smul_neg {M : Type u_1} {A : Type u_3} [Monoid M] [AddGroup A] [DistribMulAction M A] (r : M) (x : A) :
                                          r -x = -(r x)
                                          theorem smul_sub {M : Type u_1} {A : Type u_3} [Monoid M] [AddGroup A] [DistribMulAction M A] (r : M) (x : A) (y : A) :
                                          r (x - y) = r x - r y
                                          class MulDistribMulAction (M : Type u_7) (A : Type u_8) [Monoid M] [Monoid A] extends MulAction :
                                          Type (max u_7 u_8)

                                          Typeclass for multiplicative actions on multiplicative structures. This generalizes conjugation actions.

                                          • smul : MAA
                                          • one_smul : ∀ (b : A), 1 b = b
                                          • mul_smul : ∀ (x y : M) (b : A), (x * y) b = x y b
                                          • smul_mul : ∀ (r : M) (x y : A), r (x * y) = r x * r y

                                            Distributivity of across *

                                          • smul_one : ∀ (r : M), r 1 = 1

                                            Multiplying 1 by a scalar gives 1

                                          Instances
                                            theorem MulDistribMulAction.ext {M : Type u_7} {A : Type u_8} :
                                            ∀ {inst : Monoid M} {inst_1 : Monoid A} {x y : MulDistribMulAction M A}, SMul.smul = SMul.smulx = y
                                            theorem MulDistribMulAction.smul_mul {M : Type u_7} {A : Type u_8} :
                                            ∀ {inst : Monoid M} {inst_1 : Monoid A} [self : MulDistribMulAction M A] (r : M) (x y : A), r (x * y) = r x * r y

                                            Distributivity of across *

                                            theorem MulDistribMulAction.smul_one {M : Type u_7} {A : Type u_8} :
                                            ∀ {inst : Monoid M} {inst_1 : Monoid A} [self : MulDistribMulAction M A] (r : M), r 1 = 1

                                            Multiplying 1 by a scalar gives 1

                                            theorem smul_mul' {M : Type u_1} {A : Type u_3} [Monoid M] [Monoid A] [MulDistribMulAction M A] (a : M) (b₁ : A) (b₂ : A) :
                                            a (b₁ * b₂) = a b₁ * a b₂
                                            @[reducible, inline]
                                            abbrev Function.Injective.mulDistribMulAction {M : Type u_1} {A : Type u_3} {B : Type u_4} [Monoid M] [Monoid A] [MulDistribMulAction M A] [Monoid B] [SMul M B] (f : B →* A) (hf : Function.Injective f) (smul : ∀ (c : M) (x : B), f (c x) = c f x) :

                                            Pullback a multiplicative distributive multiplicative action along an injective monoid homomorphism. See note [reducible non-instances].

                                            Equations
                                            Instances For
                                              @[reducible, inline]
                                              abbrev Function.Surjective.mulDistribMulAction {M : Type u_1} {A : Type u_3} {B : Type u_4} [Monoid M] [Monoid A] [MulDistribMulAction M A] [Monoid B] [SMul M B] (f : A →* B) (hf : Function.Surjective f) (smul : ∀ (c : M) (x : A), f (c x) = c f x) :

                                              Pushforward a multiplicative distributive multiplicative action along a surjective monoid homomorphism. See note [reducible non-instances].

                                              Equations
                                              Instances For
                                                @[reducible, inline]
                                                abbrev MulDistribMulAction.compHom {M : Type u_1} {N : Type u_2} (A : Type u_3) [Monoid M] [Monoid A] [MulDistribMulAction M A] [Monoid N] (f : N →* M) :

                                                Compose a MulDistribMulAction with a MonoidHom, with action f r' • m. See note [reducible non-instances].

                                                Equations
                                                Instances For
                                                  def MulDistribMulAction.toMonoidHom {M : Type u_1} (A : Type u_3) [Monoid M] [Monoid A] [MulDistribMulAction M A] (r : M) :
                                                  A →* A

                                                  Scalar multiplication by r as a MonoidHom.

                                                  Equations
                                                  Instances For
                                                    @[simp]
                                                    theorem MulDistribMulAction.toMonoidHom_apply {M : Type u_1} {A : Type u_3} [Monoid M] [Monoid A] [MulDistribMulAction M A] (r : M) (x : A) :
                                                    @[simp]
                                                    theorem smul_pow' {M : Type u_1} {A : Type u_3} [Monoid M] [Monoid A] [MulDistribMulAction M A] (r : M) (x : A) (n : ) :
                                                    r x ^ n = (r x) ^ n

                                                    Each element of the monoid defines a monoid homomorphism.

                                                    Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem smul_inv' {M : Type u_1} {A : Type u_3} [Monoid M] [Group A] [MulDistribMulAction M A] (r : M) (x : A) :
                                                      r x⁻¹ = (r x)⁻¹
                                                      theorem smul_div' {M : Type u_1} {A : Type u_3} [Monoid M] [Group A] [MulDistribMulAction M A] (r : M) (x : A) (y : A) :
                                                      r (x / y) = r x / r y

                                                      The tautological action by AddMonoid.End α on α.

                                                      This generalizes Function.End.applyMulAction.

                                                      Equations
                                                      @[simp]
                                                      theorem AddMonoid.End.smul_def {α : Type u_5} [AddMonoid α] (f : AddMonoid.End α) (a : α) :
                                                      f a = f a
                                                      def DistribMulAction.toAddEquiv₀ {α : Type u_7} (β : Type u_8) [GroupWithZero α] [AddMonoid β] [DistribMulAction α β] (x : α) (hx : x 0) :
                                                      β ≃+ β

                                                      Each non-zero element of a GroupWithZero defines an additive monoid isomorphism of an AddMonoid on which it acts distributively. This is a stronger version of DistribMulAction.toAddMonoidHom.

                                                      Equations
                                                      Instances For
                                                        theorem smul_eq_zero_iff_eq {α : Type u_5} {β : Type u_6} [Group α] [AddMonoid β] [DistribMulAction α β] (a : α) {x : β} :
                                                        a x = 0 x = 0
                                                        theorem smul_ne_zero_iff_ne {α : Type u_5} {β : Type u_6} [Group α] [AddMonoid β] [DistribMulAction α β] (a : α) {x : β} :
                                                        a x 0 x 0