Documentation

Mathlib.Algebra.Group.Action.Prod

Prod instances for additive and multiplicative actions #

This file defines instances for binary product of additive and multiplicative actions and provides scalar multiplication as a homomorphism from α × β to β.

Main declarations #

See also #

Porting notes #

The to_additive attribute can be used to generate both the smul and vadd lemmas from the corresponding pow lemmas, as explained on zulip here: https://leanprover.zulipchat.com/#narrow/near/316087838

This was not done as part of the port in order to stay as close as possible to the mathlib3 code.

instance Prod.smul {M : Type u_1} {α : Type u_5} {β : Type u_6} [SMul M α] [SMul M β] :
SMul M (α × β)
Equations
  • Prod.smul = { smul := fun (a : M) (p : α × β) => (a p.1, a p.2) }
instance Prod.vadd {M : Type u_1} {α : Type u_5} {β : Type u_6} [VAdd M α] [VAdd M β] :
VAdd M (α × β)
Equations
  • Prod.vadd = { vadd := fun (a : M) (p : α × β) => (a +ᵥ p.1, a +ᵥ p.2) }
@[simp]
theorem Prod.smul_fst {M : Type u_1} {α : Type u_5} {β : Type u_6} [SMul M α] [SMul M β] (a : M) (x : α × β) :
(a x).1 = a x.1
@[simp]
theorem Prod.vadd_fst {M : Type u_1} {α : Type u_5} {β : Type u_6} [VAdd M α] [VAdd M β] (a : M) (x : α × β) :
(a +ᵥ x).1 = a +ᵥ x.1
@[simp]
theorem Prod.smul_snd {M : Type u_1} {α : Type u_5} {β : Type u_6} [SMul M α] [SMul M β] (a : M) (x : α × β) :
(a x).2 = a x.2
@[simp]
theorem Prod.vadd_snd {M : Type u_1} {α : Type u_5} {β : Type u_6} [VAdd M α] [VAdd M β] (a : M) (x : α × β) :
(a +ᵥ x).2 = a +ᵥ x.2
@[simp]
theorem Prod.smul_mk {M : Type u_1} {α : Type u_5} {β : Type u_6} [SMul M α] [SMul M β] (a : M) (b : α) (c : β) :
a (b, c) = (a b, a c)
@[simp]
theorem Prod.vadd_mk {M : Type u_1} {α : Type u_5} {β : Type u_6} [VAdd M α] [VAdd M β] (a : M) (b : α) (c : β) :
a +ᵥ (b, c) = (a +ᵥ b, a +ᵥ c)
theorem Prod.smul_def {M : Type u_1} {α : Type u_5} {β : Type u_6} [SMul M α] [SMul M β] (a : M) (x : α × β) :
a x = (a x.1, a x.2)
theorem Prod.vadd_def {M : Type u_1} {α : Type u_5} {β : Type u_6} [VAdd M α] [VAdd M β] (a : M) (x : α × β) :
a +ᵥ x = (a +ᵥ x.1, a +ᵥ x.2)
@[simp]
theorem Prod.smul_swap {M : Type u_1} {α : Type u_5} {β : Type u_6} [SMul M α] [SMul M β] (a : M) (x : α × β) :
(a x).swap = a x.swap
@[simp]
theorem Prod.vadd_swap {M : Type u_1} {α : Type u_5} {β : Type u_6} [VAdd M α] [VAdd M β] (a : M) (x : α × β) :
(a +ᵥ x).swap = a +ᵥ x.swap
instance Prod.pow {E : Type u_4} {α : Type u_5} {β : Type u_6} [Pow α E] [Pow β E] :
Pow (α × β) E
Equations
  • Prod.pow = { pow := fun (p : α × β) (c : E) => (p.1 ^ c, p.2 ^ c) }
@[simp]
theorem Prod.pow_fst {E : Type u_4} {α : Type u_5} {β : Type u_6} [Pow α E] [Pow β E] (p : α × β) (c : E) :
(p ^ c).1 = p.1 ^ c
@[simp]
theorem Prod.pow_snd {E : Type u_4} {α : Type u_5} {β : Type u_6} [Pow α E] [Pow β E] (p : α × β) (c : E) :
(p ^ c).2 = p.2 ^ c
@[simp]
theorem Prod.pow_mk {E : Type u_4} {α : Type u_5} {β : Type u_6} [Pow α E] [Pow β E] (c : E) (a : α) (b : β) :
(a, b) ^ c = (a ^ c, b ^ c)
theorem Prod.pow_def {E : Type u_4} {α : Type u_5} {β : Type u_6} [Pow α E] [Pow β E] (p : α × β) (c : E) :
p ^ c = (p.1 ^ c, p.2 ^ c)
@[simp]
theorem Prod.pow_swap {E : Type u_4} {α : Type u_5} {β : Type u_6} [Pow α E] [Pow β E] (p : α × β) (c : E) :
(p ^ c).swap = p.swap ^ c
instance Prod.isScalarTower {M : Type u_1} {N : Type u_2} {α : Type u_5} {β : Type u_6} [SMul M α] [SMul M β] [SMul N α] [SMul N β] [SMul M N] [IsScalarTower M N α] [IsScalarTower M N β] :
IsScalarTower M N (α × β)
Equations
  • =
instance Prod.vaddAssocClass {M : Type u_1} {N : Type u_2} {α : Type u_5} {β : Type u_6} [VAdd M α] [VAdd M β] [VAdd N α] [VAdd N β] [VAdd M N] [VAddAssocClass M N α] [VAddAssocClass M N β] :
VAddAssocClass M N (α × β)
Equations
  • =
instance Prod.smulCommClass {M : Type u_1} {N : Type u_2} {α : Type u_5} {β : Type u_6} [SMul M α] [SMul M β] [SMul N α] [SMul N β] [SMulCommClass M N α] [SMulCommClass M N β] :
SMulCommClass M N (α × β)
Equations
  • =
instance Prod.vaddCommClass {M : Type u_1} {N : Type u_2} {α : Type u_5} {β : Type u_6} [VAdd M α] [VAdd M β] [VAdd N α] [VAdd N β] [VAddCommClass M N α] [VAddCommClass M N β] :
VAddCommClass M N (α × β)
Equations
  • =
instance Prod.isCentralScalar {M : Type u_1} {α : Type u_5} {β : Type u_6} [SMul M α] [SMul M β] [SMul Mᵐᵒᵖ α] [SMul Mᵐᵒᵖ β] [IsCentralScalar M α] [IsCentralScalar M β] :
Equations
  • =
instance Prod.isCentralVAdd {M : Type u_1} {α : Type u_5} {β : Type u_6} [VAdd M α] [VAdd M β] [VAdd Mᵃᵒᵖ α] [VAdd Mᵃᵒᵖ β] [IsCentralVAdd M α] [IsCentralVAdd M β] :
IsCentralVAdd M (α × β)
Equations
  • =
instance Prod.faithfulSMulLeft {M : Type u_1} {α : Type u_5} {β : Type u_6} [SMul M α] [SMul M β] [FaithfulSMul M α] [Nonempty β] :
FaithfulSMul M (α × β)
Equations
  • =
instance Prod.faithfulVAddLeft {M : Type u_1} {α : Type u_5} {β : Type u_6} [VAdd M α] [VAdd M β] [FaithfulVAdd M α] [Nonempty β] :
FaithfulVAdd M (α × β)
Equations
  • =
instance Prod.faithfulSMulRight {M : Type u_1} {α : Type u_5} {β : Type u_6} [SMul M α] [SMul M β] [Nonempty α] [FaithfulSMul M β] :
FaithfulSMul M (α × β)
Equations
  • =
instance Prod.faithfulVAddRight {M : Type u_1} {α : Type u_5} {β : Type u_6} [VAdd M α] [VAdd M β] [Nonempty α] [FaithfulVAdd M β] :
FaithfulVAdd M (α × β)
Equations
  • =
instance Prod.smulCommClassBoth {M : Type u_1} {N : Type u_2} {P : Type u_3} [Mul N] [Mul P] [SMul M N] [SMul M P] [SMulCommClass M N N] [SMulCommClass M P P] :
SMulCommClass M (N × P) (N × P)
Equations
  • =
instance Prod.vaddCommClassBoth {M : Type u_1} {N : Type u_2} {P : Type u_3} [Add N] [Add P] [VAdd M N] [VAdd M P] [VAddCommClass M N N] [VAddCommClass M P P] :
VAddCommClass M (N × P) (N × P)
Equations
  • =
instance Prod.isScalarTowerBoth {M : Type u_1} {N : Type u_2} {P : Type u_3} [Mul N] [Mul P] [SMul M N] [SMul M P] [IsScalarTower M N N] [IsScalarTower M P P] :
IsScalarTower M (N × P) (N × P)
Equations
  • =
instance Prod.mulAction {M : Type u_1} {α : Type u_5} {β : Type u_6} [Monoid M] [MulAction M α] [MulAction M β] :
MulAction M (α × β)
Equations
theorem Prod.addAction.proof_2 {M : Type u_3} {α : Type u_1} {β : Type u_2} [AddMonoid M] [AddAction M α] [AddAction M β] :
∀ (x x_1 : M) (x_2 : α × β), (x + x_1 +ᵥ x_2.1, x + x_1 +ᵥ x_2.2) = (x +ᵥ (x_1 +ᵥ x_2).1, x +ᵥ (x_1 +ᵥ x_2).2)
instance Prod.addAction {M : Type u_1} {α : Type u_5} {β : Type u_6} [AddMonoid M] [AddAction M α] [AddAction M β] :
AddAction M (α × β)
Equations
theorem Prod.addAction.proof_1 {M : Type u_3} {α : Type u_1} {β : Type u_2} [AddMonoid M] [AddAction M α] [AddAction M β] :
∀ (x : α × β), (0 +ᵥ x.1, 0 +ᵥ x.2) = (x.1, x.2)

Scalar multiplication as a homomorphism #

def smulMulHom {α : Type u_5} {β : Type u_6} [Monoid α] [Mul β] [MulAction α β] [IsScalarTower α β β] [SMulCommClass α β β] :
α × β →ₙ* β

Scalar multiplication as a multiplicative homomorphism.

Equations
  • smulMulHom = { toFun := fun (a : α × β) => a.1 a.2, map_mul' := }
Instances For
    @[simp]
    theorem smulMulHom_apply {α : Type u_5} {β : Type u_6} [Monoid α] [Mul β] [MulAction α β] [IsScalarTower α β β] [SMulCommClass α β β] (a : α × β) :
    smulMulHom a = a.1 a.2
    def smulMonoidHom {α : Type u_5} {β : Type u_6} [Monoid α] [MulOneClass β] [MulAction α β] [IsScalarTower α β β] [SMulCommClass α β β] :
    α × β →* β

    Scalar multiplication as a monoid homomorphism.

    Equations
    • smulMonoidHom = { toFun := smulMulHom.toFun, map_one' := , map_mul' := }
    Instances For
      @[simp]
      theorem smulMonoidHom_apply {α : Type u_5} {β : Type u_6} [Monoid α] [MulOneClass β] [MulAction α β] [IsScalarTower α β β] [SMulCommClass α β β] :
      ∀ (a : α × β), smulMonoidHom a = smulMulHom.toFun a
      @[reducible, inline]
      abbrev MulAction.prodOfSMulCommClass (M : Type u_1) (N : Type u_2) (α : Type u_5) [Monoid M] [Monoid N] [MulAction M α] [MulAction N α] [SMulCommClass M N α] :
      MulAction (M × N) α

      Construct a MulAction by a product monoid from MulActions by the factors. This is not an instance to avoid diamonds for example when α := M × N.

      Equations
      Instances For
        theorem AddAction.prodOfVAddCommClass.proof_1 (M : Type u_2) (N : Type u_3) (α : Type u_1) [AddMonoid M] [AddMonoid N] [AddAction M α] [AddAction N α] (a : α) :
        0 +ᵥ (0.2 +ᵥ a) = a
        theorem AddAction.prodOfVAddCommClass.proof_2 (M : Type u_1) (N : Type u_2) (α : Type u_3) [AddMonoid M] [AddMonoid N] [AddAction M α] [AddAction N α] [VAddCommClass M N α] (x : M × N) (y : M × N) (a : α) :
        x.1 + y.1 +ᵥ (x.2 + y.2 +ᵥ a) = x.1 +ᵥ (x.2 +ᵥ (y.1 +ᵥ (y.2 +ᵥ a)))
        @[reducible, inline]
        abbrev AddAction.prodOfVAddCommClass (M : Type u_1) (N : Type u_2) (α : Type u_5) [AddMonoid M] [AddMonoid N] [AddAction M α] [AddAction N α] [VAddCommClass M N α] :
        AddAction (M × N) α

        Construct an AddAction by a product monoid from AddActions by the factors. This is not an instance to avoid diamonds for example when α := M × N.

        Equations
        Instances For
          def MulAction.prodEquiv (M : Type u_1) (N : Type u_2) (α : Type u_5) [Monoid M] [Monoid N] :
          MulAction (M × N) α (x : MulAction M α) ×' (x_1 : MulAction N α) ×' SMulCommClass M N α

          A MulAction by a product monoid is equivalent to commuting MulActions by the factors.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem AddAction.prodEquiv.proof_4 (M : Type u_1) (N : Type u_3) (α : Type u_2) [AddMonoid M] [AddMonoid N] :
            ∀ (x : (x : AddAction M α) ×' (x_1 : AddAction N α) ×' VAddCommClass M N α), (fun (x : AddAction (M × N) α) => AddAction.compHom α (AddMonoidHom.inl M N), AddAction.compHom α (AddMonoidHom.inr M N), ) ((fun (_insts : (x : AddAction M α) ×' (x_1 : AddAction N α) ×' VAddCommClass M N α) => let_fun this := ; AddAction.prodOfVAddCommClass M N α) x) = x
            theorem AddAction.prodEquiv.proof_2 (M : Type u_1) (N : Type u_2) (α : Type u_3) [AddMonoid M] [AddMonoid N] (_insts : (x : AddAction M α) ×' (x_1 : AddAction N α) ×' VAddCommClass M N α) :
            theorem AddAction.prodEquiv.proof_1 (M : Type u_1) (N : Type u_2) (α : Type u_3) [AddMonoid M] [AddMonoid N] :
            ∀ (x : AddAction (M × N) α), VAddCommClass M N α
            def AddAction.prodEquiv (M : Type u_1) (N : Type u_2) (α : Type u_5) [AddMonoid M] [AddMonoid N] :
            AddAction (M × N) α (x : AddAction M α) ×' (x_1 : AddAction N α) ×' VAddCommClass M N α

            An AddAction by a product monoid is equivalent to commuting AddActions by the factors.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem AddAction.prodEquiv.proof_3 (M : Type u_2) (N : Type u_1) (α : Type u_3) [AddMonoid M] [AddMonoid N] :
              ∀ (x : AddAction (M × N) α), (fun (_insts : (x : AddAction M α) ×' (x_1 : AddAction N α) ×' VAddCommClass M N α) => let_fun this := ; AddAction.prodOfVAddCommClass M N α) ((fun (x : AddAction (M × N) α) => AddAction.compHom α (AddMonoidHom.inl M N), AddAction.compHom α (AddMonoidHom.inr M N), ) x) = x