The “almost everywhere” filter of co-null sets. #
If μ
is an outer measure or a measure on α
,
then MeasureTheory.ae μ
is the filter of co-null sets: s ∈ ae μ ↔ μ sᶜ = 0
.
In this file we define the filter and prove some basic theorems about it.
Notation #
∀ᵐ x ∂μ, p x
: the predicatep
holds forμ
-a.e. allx
;∃ᶠ x ∂μ, p x
: the predicatep
holds on a set of nonzero measure;f =ᵐ[μ] g
:f x = g x
forμ
-a.e. allx
;f ≤ᵐ[μ] g
:f x ≤ g x
forμ
-a.e. allx
.
Implementation details #
All notation introduced in this file
reducibly unfolds to the corresponding definitions about filters,
so generic lemmas about Filter.Eventually
, Filter.EventuallyEq
etc apply.
However, we restate some lemmas specifically for ae
.
Tags #
outer measure, measure, almost everywhere
def
MeasureTheory.ae
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
(μ : F)
:
Filter α
The “almost everywhere” filter of co-null sets.
Equations
- MeasureTheory.ae μ = Filter.ofCountableUnion (fun (x : Set α) => μ x = 0) ⋯ ⋯
Instances For
theorem
MeasureTheory.mem_ae_iff
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
{μ : F}
{s : Set α}
:
s ∈ MeasureTheory.ae μ ↔ μ sᶜ = 0
theorem
MeasureTheory.compl_mem_ae_iff
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
{μ : F}
{s : Set α}
:
sᶜ ∈ MeasureTheory.ae μ ↔ μ s = 0
theorem
MeasureTheory.ae_of_all
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
{p : α → Prop}
(μ : F)
:
(∀ (a : α), p a) → ∀ᵐ (a : α) ∂μ, p a
instance
MeasureTheory.instCountableInterFilter
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
{μ : F}
:
Equations
- ⋯ = ⋯
theorem
MeasureTheory.all_ae_of
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
{μ : F}
{ι : Sort u_4}
{p : α → ι → Prop}
(hp : ∀ᵐ (a : α) ∂μ, ∀ (i : ι), p a i)
(i : ι)
:
∀ᵐ (a : α) ∂μ, p a i
@[simp]
theorem
MeasureTheory.ae_eq_top
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
{μ : F}
:
MeasureTheory.ae μ = ⊤ ↔ ∀ (a : α), μ {a} ≠ 0
theorem
Filter.EventuallyLE.measure_le
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
{μ : F}
{s : Set α}
{t : Set α}
(H : s ≤ᵐ[μ] t)
:
μ s ≤ μ t
Alias of MeasureTheory.measure_mono_ae
.
If s ⊆ t
modulo a set of measure 0
, then μ s ≤ μ t
.
theorem
Filter.EventuallyEq.measure_eq
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
{μ : F}
{s : Set α}
{t : Set α}
(H : s =ᵐ[μ] t)
:
μ s = μ t
Alias of MeasureTheory.measure_congr
.
If two sets are equal modulo a set of measure zero, then μ s = μ t
.