The “almost everywhere” filter of co-null sets. #
If μ is an outer measure or a measure on α,
then MeasureTheory.ae μ is the filter of co-null sets: s ∈ ae μ ↔ μ sᶜ = 0.
In this file we define the filter and prove some basic theorems about it.
Notation #
∀ᵐ x ∂μ, p x: the predicatepholds forμ-a.e. allx;∃ᶠ x ∂μ, p x: the predicatepholds on a set of nonzero measure;f =ᵐ[μ] g:f x = g xforμ-a.e. allx;f ≤ᵐ[μ] g:f x ≤ g xforμ-a.e. allx.
Implementation details #
All notation introduced in this file
reducibly unfolds to the corresponding definitions about filters,
so generic lemmas about Filter.Eventually, Filter.EventuallyEq etc apply.
However, we restate some lemmas specifically for ae.
Tags #
outer measure, measure, almost everywhere
def
MeasureTheory.ae
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
(μ : F)
:
Filter α
The “almost everywhere” filter of co-null sets.
Equations
- MeasureTheory.ae μ = Filter.ofCountableUnion (fun (x : Set α) => μ x = 0) ⋯ ⋯
Instances For
theorem
MeasureTheory.mem_ae_iff
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
{μ : F}
{s : Set α}
:
s ∈ MeasureTheory.ae μ ↔ μ sᶜ = 0
theorem
MeasureTheory.compl_mem_ae_iff
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
{μ : F}
{s : Set α}
:
sᶜ ∈ MeasureTheory.ae μ ↔ μ s = 0
theorem
MeasureTheory.ae_of_all
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
{p : α → Prop}
(μ : F)
:
(∀ (a : α), p a) → ∀ᵐ (a : α) ∂μ, p a
instance
MeasureTheory.instCountableInterFilter
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
{μ : F}
:
Equations
- ⋯ = ⋯
theorem
MeasureTheory.all_ae_of
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
{μ : F}
{ι : Sort u_4}
{p : α → ι → Prop}
(hp : ∀ᵐ (a : α) ∂μ, ∀ (i : ι), p a i)
(i : ι)
:
∀ᵐ (a : α) ∂μ, p a i
@[simp]
theorem
MeasureTheory.ae_eq_top
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
{μ : F}
:
MeasureTheory.ae μ = ⊤ ↔ ∀ (a : α), μ {a} ≠ 0
theorem
Filter.EventuallyLE.measure_le
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
{μ : F}
{s : Set α}
{t : Set α}
(H : s ≤ᵐ[μ] t)
:
μ s ≤ μ t
Alias of MeasureTheory.measure_mono_ae.
If s ⊆ t modulo a set of measure 0, then μ s ≤ μ t.
theorem
Filter.EventuallyEq.measure_eq
{α : Type u_1}
{F : Type u_3}
[FunLike F (Set α) ENNReal]
[MeasureTheory.OuterMeasureClass F α]
{μ : F}
{s : Set α}
{t : Set α}
(H : s =ᵐ[μ] t)
:
μ s = μ t
Alias of MeasureTheory.measure_congr.
If two sets are equal modulo a set of measure zero, then μ s = μ t.