Definitions about filters #
A filter on a type α
is a collection of sets of α
which contains the whole α
,
is upwards-closed, and is stable under intersection. Filters are mostly used to
abstract two related kinds of ideas:
- limits, including finite or infinite limits of sequences, finite or infinite limits of functions at a point or at infinity, etc...
- things happening eventually, including things happening for large enough
n : ℕ
, or near enough a pointx
, or for close enough pairs of points, or things happening almost everywhere in the sense of measure theory. Dually, filters can also express the idea of things happening often: for arbitrarily largen
, or at a point in any neighborhood of given a point etc...
Main definitions #
Filter
: filters on a set;Filter.principal
,𝓟 s
: filter of all sets containing a given set;Filter.map
,Filter.comap
: operations on filters;Filter.Tendsto
: limit with respect to filters;Filter.Eventually
:f.Eventually p
means{x | p x} ∈ f
;Filter.Frequently
:f.Frequently p
means{x | ¬p x} ∉ f
;filter_upwards [h₁, ..., hₙ]
: a tactic that takes a list of proofshᵢ : sᵢ ∈ f
, and replaces a goals ∈ f
with∀ x, x ∈ s₁ → ... → x ∈ sₙ → x ∈ s
;Filter.NeBot f
: a utility class stating thatf
is a non-trivial filter.
Notations #
∀ᶠ x in f, p x
:f.Eventually p
;∃ᶠ x in f, p x
:f.Frequently p
;f =ᶠ[l] g
:∀ᶠ x in l, f x = g x
;f ≤ᶠ[l] g
:∀ᶠ x in l, f x ≤ g x
;𝓟 s
:Filter.Principal s
, localized inFilter
.
Implementation Notes #
Important note: Bourbaki requires that a filter on X
cannot contain all sets of X
,
which we do not require.
This gives Filter X
better formal properties,
in particular a bottom element ⊥
for its lattice structure,
at the cost of including the assumption [NeBot f]
in a number of lemmas and definitions.
References #
- [N. Bourbaki, General Topology][bourbaki1966]
A filter F
on a type α
is a collection of sets of α
which contains the whole α
,
is upwards-closed, and is stable under intersection. We do not forbid this collection to be
all sets of α
.
The set of sets that belong to the filter.
- univ_sets : Set.univ ∈ self.sets
The set
Set.univ
belongs to any filter. If a set belongs to a filter, then its superset belongs to the filter as well.
If two sets belong to a filter, then their intersection belongs to the filter as well.
Instances For
If F
is a filter on α
, and U
a subset of α
then we can write U ∈ F
as on paper.
Construct a filter from a property that is stable under finite unions.
A set s
belongs to Filter.comk p _ _ _
iff its complement satisfies the predicate p
.
This constructor is useful to define filters like Filter.cofinite
.
Equations
- Filter.comk p he hmono hunion = { sets := {t : Set α | p tᶜ}, univ_sets := ⋯, sets_of_superset := ⋯, inter_sets := ⋯ }
Instances For
The principal filter of s
is the collection of all supersets of s
.
Equations
- Filter.principal s = { sets := {t : Set α | s ⊆ t}, univ_sets := ⋯, sets_of_superset := ⋯, inter_sets := ⋯ }
Instances For
pure x
is the set of sets that contain x
. It is equal to 𝓟 {x}
but
with this definition we have s ∈ pure a
defeq a ∈ s
.
Equations
- Filter.instPure = { pure := fun {α : Type ?u.7} (x : α) => (Filter.principal {x}).copy {s : Set α | x ∈ s} ⋯ }
Equations
- Filter.instPartialOrder = PartialOrder.mk ⋯
Equations
- Filter.instSupSet = { sSup := fun (S : Set (Filter α)) => (Filter.principal S).join }
Infimum of a set of filters. This definition is marked as irreducible so that Lean doesn't try to unfold it when unifying expressions.
Equations
- Filter.sInf s = sSup (lowerBounds s)
Instances For
The infimum of filters is the filter generated by intersections of elements of the two filters.
A filter is NeBot
if it is not equal to ⊥
, or equivalently the empty set does not belong to
the filter. Bourbaki include this assumption in the definition of a filter but we prefer to have a
CompleteLattice
structure on Filter _
, so we use a typeclass argument in lemmas instead.
The filter is nontrivial:
f ≠ ⊥
or equivalently,∅ ∉ f
.
Instances
f.Eventually p
or ∀ᶠ x in f, p x
mean that {x | p x} ∈ f
. E.g., ∀ᶠ x in atTop, p x
means that p
holds true for sufficiently large x
.
Equations
- Filter.Eventually p f = ({x : α | p x} ∈ f)
Instances For
f.Frequently p
or ∃ᶠ x in f, p x
mean that {x | ¬p x} ∉ f
. E.g., ∃ᶠ x in atTop, p x
means that there exist arbitrarily large x
for which p
holds true.
Equations
- Filter.Frequently p f = ¬∀ᶠ (x : α) in f, ¬p x
Instances For
The forward map of a filter
Equations
- Filter.map m f = { sets := Set.preimage m ⁻¹' f.sets, univ_sets := ⋯, sets_of_superset := ⋯, inter_sets := ⋯ }
Instances For
Filter.Tendsto
is the generic "limit of a function" predicate.
Tendsto f l₁ l₂
asserts that for every l₂
neighborhood a
,
the f
-preimage of a
is an l₁
neighborhood.
Equations
- Filter.Tendsto f l₁ l₂ = (Filter.map f l₁ ≤ l₂)
Instances For
The inverse map of a filter. A set s
belongs to Filter.comap m f
if either of the following
equivalent conditions hold.
- There exists a set
t ∈ f
such thatm ⁻¹' t ⊆ s
. This is used as a definition. - The set
kernImage m s = {y | ∀ x, m x = y → x ∈ s}
belongs tof
, seeFilter.mem_comap'
. - The set
(m '' sᶜ)ᶜ
belongs tof
, seeFilter.mem_comap_iff_compl
andFilter.compl_mem_comap
.
Equations
- Filter.comap m f = { sets := {s : Set α | ∃ t ∈ f, m ⁻¹' t ⊆ s}, univ_sets := ⋯, sets_of_superset := ⋯, inter_sets := ⋯ }
Instances For
Product of filters. This is the filter generated by cartesian products of elements of the component filters.
Equations
- f.prod g = Filter.comap Prod.fst f ⊓ Filter.comap Prod.snd g
Instances For
Coproduct of filters.
Equations
- f.coprod g = Filter.comap Prod.fst f ⊔ Filter.comap Prod.snd g
Instances For
The monadic bind operation on filter is defined the usual way in terms of map
and join
.
Unfortunately, this bind
does not result in the expected applicative. See Filter.seq
for the
applicative instance.
Equations
- f.bind m = (Filter.map m f).join
Instances For
The applicative sequentiation operation. This is not induced by the bind operation.
Equations
Instances For
This filter is characterized by Filter.eventually_curry_iff
:
(∀ᶠ (x : α × β) in f.curry g, p x) ↔ ∀ᶠ (x : α) in f, ∀ᶠ (y : β) in g, p (x, y)
. Useful
in adding quantifiers to the middle of Tendsto
s. See
hasFDerivAt_of_tendstoUniformlyOnFilter
.
Equations
- f.curry g = f.bind fun (a : α) => Filter.map (fun (x : β) => (a, x)) g
Instances For
Equations
- Filter.instFunctor = { map := @Filter.map, mapConst := fun {α β : Type ?u.8} => Filter.map ∘ Function.const β }
filter_upwards [h₁, ⋯, hₙ]
replaces a goal of the form s ∈ f
and terms
h₁ : t₁ ∈ f, ⋯, hₙ : tₙ ∈ f
with ∀ x, x ∈ t₁ → ⋯ → x ∈ tₙ → x ∈ s
.
The list is an optional parameter, []
being its default value.
filter_upwards [h₁, ⋯, hₙ] with a₁ a₂ ⋯ aₖ
is a short form for
{ filter_upwards [h₁, ⋯, hₙ], intros a₁ a₂ ⋯ aₖ }
.
filter_upwards [h₁, ⋯, hₙ] using e
is a short form for
{ filter_upwards [h1, ⋯, hn], exact e }
.
Combining both shortcuts is done by writing filter_upwards [h₁, ⋯, hₙ] with a₁ a₂ ⋯ aₖ using e
.
Note that in this case, the aᵢ
terms can be used in e
.
Equations
- One or more equations did not get rendered due to their size.