Documentation

SSA.Core.Framework

NOTE: Monadic Code Needs Pointfree Theorems #

It is always best to write theorems in unapplied fashion, since a monadic function is often used in chains of binds.

A theorem of the form 'f1 x = f2 x'cannot be used in a context 'f1 >>= g', but a pointfree theorem of the form 'f = g'permits rewriting everywhere, even in 'f1 >>= g'.

This is not a problem in pure code, since we rarely use poinfree style with (f ∘ g), but this is much more pervasive in monadic code, where 'f >>= g' is common.

Thus, the rule is that ALL rewrite rules are written pointfree in the last argument.

NOTE: Normal form for monadic code #

We never use functor and applicative instances. Rather, we always write definitions in terms of monadic code, using 'non-canonical' haskell code such as mv >>= (fun v => return (g v)) rather than writing the more natural g <$> mv since it is much easier to design simp sets and tactics that consistenty simplify monadic bind, instead of a combination of: <$>, <*>, return, pure, >>=.

Furthermore, consistent use of >>= simplifes reasoning about information flow, where left-to-right order clearly implies the direction of information flow.

theorem Pure.pure_cast {β : Type u_1} {α : Type u_1} {f : Type u_1 → Type u_2} [inst : Pure f] (b : β) (h : β = α) :
pure (cast h b) = cast (pure b)
@[reducible, inline]
abbrev RegionSignature (Ty : Type) :
Equations
Instances For
    structure Signature (Ty : Type) :
    Instances For
      @[reducible, inline]
      abbrev Signature.mk {Ty : Type} (sig : List Ty) (regSig : RegionSignature Ty) (outTy : Ty) :
      Equations
      Instances For
        Instances
          def DialectSignature.sig {d : Dialect} [s : DialectSignature d] :
          d.OpList d.Ty
          Equations
          • DialectSignature.sig = Signature.sig signature
          Instances For
            Equations
            • DialectSignature.regSig = Signature.regSig signature
            Instances For
              def DialectSignature.outTy {d : Dialect} [s : DialectSignature d] :
              d.Opd.Ty
              Equations
              • DialectSignature.outTy = Signature.outTy signature
              Instances For
                Equations
                • DialectSignature.effectKind = Signature.effectKind signature
                Instances For
                  Instances
                    inductive Expr (d : Dialect) [DialectSignature d] (Γ : Ctxt d.Ty) (eff : EffectKind) (ty : d.Ty) :

                    An intrinsically typed expression whose effect is at most EffectKind

                    Instances For
                      inductive Com (d : Dialect) [DialectSignature d] :
                      Ctxt d.TyEffectKindd.TyType

                      A very simple intrinsically typed program: a sequence of let bindings. Note that the EffectKind is uniform: if a Com is pure, then the expression and its body are pure, and if a Com is impure, then both the expression and the body are impure!

                      Instances For
                        inductive Lets (d : Dialect) [DialectSignature d] (Γ_in : Ctxt d.Ty) (eff : EffectKind) (Γ_out : Ctxt d.Ty) :

                        Lets d Γ_in Γ_out is a sequence of lets which are well-formed under context Γ_out and result in context Γ_in.

                        Instances For
                          structure Zipper (d : Dialect) [DialectSignature d] (Γ_in : Ctxt d.Ty) (eff : EffectKind) (Γ_mid : Ctxt d.Ty) (ty : d.Ty) :

                          Zipper d Γ_in eff Γ_mid ty represents a particular position in a program, by storing the Lets that come before this position separately from the Com that represents the rest. Thus, Γ_in is the context of the program as a whole, while Γ_mid is the context at the current position.

                          While technically the position is in between two let-bindings, by convention we say that the first binding of top : Lets .. is the current binding of a particular zipper.

                          • top : Lets d Γ_in eff Γ_mid

                            The let-bindings at the top of the zipper

                          • bot : Com d Γ_mid eff ty

                            The program at the bottom of the zipper

                          Instances For
                            partial def reprRegArgsAux {d : Dialect} [DialectSignature d] [Repr d.Op] [Repr d.Ty] [Repr d.Ty] {ts : List (Ctxt d.Ty × d.Ty)} (regArgs : HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 EffectKind.impure t.2) ts) :

                            Convert a HVector of region arguments into a List of format strings.

                            partial def Expr.repr {d : Dialect} [DialectSignature d] [Repr d.Op] [Repr d.Ty] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} :
                            Expr d Γ eff tLean.Format
                            partial def Com.repr {d : Dialect} [DialectSignature d] [Repr d.Op] [Repr d.Ty] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} (prec : ) (com : Com d Γ eff t) :

                            Format string for a Com, with the region parentheses and formal argument list.

                            partial def comReprAux {d : Dialect} [DialectSignature d] [Repr d.Op] [Repr d.Ty] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} (prec : ) :
                            Com d Γ eff tLean.Format

                            Format string for sequence of assignments and return in a Com.

                            def Lets.repr {d : Dialect} [DialectSignature d] [Repr d.Op] [Repr d.Ty] {eff : Ctxt d.Ty} {Γ : EffectKind} {t : Ctxt d.Ty} (prec : ) :
                            Lets d eff Γ tLean.Format
                            Equations
                            Instances For
                              instance instReprExpr {d : Dialect} [DialectSignature d] [Repr d.Op] [Repr d.Ty] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} :
                              Repr (Expr d Γ eff t)
                              Equations
                              • instReprExpr = { reprPrec := flip Expr.repr }
                              instance instReprCom {d : Dialect} [DialectSignature d] [Repr d.Op] [Repr d.Ty] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} :
                              Repr (Com d Γ eff t)
                              Equations
                              • instReprCom = { reprPrec := flip Com.repr }
                              instance instReprLets {d : Dialect} [DialectSignature d] [Repr d.Op] [Repr d.Ty] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : Ctxt d.Ty} :
                              Repr (Lets d Γ eff t)
                              Equations
                              • instReprLets = { reprPrec := flip Lets.repr }
                              @[irreducible]
                              instance HVector.decidableEqReg {d : Dialect} [DialectSignature d] [DecidableEq d.Op] [DecidableEq d.Ty] {l : List (Ctxt d.Ty × d.Ty)} :
                              DecidableEq (HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 EffectKind.impure t.2) l)
                              Equations
                              @[irreducible]
                              instance Expr.decidableEq {d : Dialect} [DialectSignature d] {eff : EffectKind} [DecidableEq d.Op] [DecidableEq d.Ty] {Γ : Ctxt d.Ty} {ty : d.Ty} :
                              DecidableEq (Expr d Γ eff ty)
                              Equations
                              • One or more equations did not get rendered due to their size.
                              @[irreducible]
                              instance Com.decidableEq {d : Dialect} [DialectSignature d] [DecidableEq d.Op] [DecidableEq d.Ty] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} :
                              DecidableEq (Com d Γ eff ty)
                              Equations
                              def Com.recAux' {d : Dialect} [DialectSignature d] {motive : {Γ : Ctxt d.Ty} → {eff : EffectKind} → {t : d.Ty} → Com d Γ eff tSort u} (ret : {Γ : Ctxt d.Ty} → {t : d.Ty} → {eff : EffectKind} → (v : Γ.Var t) → motive (Com.ret v)) (var : {Γ : Ctxt d.Ty} → {t u : d.Ty} → {eff : EffectKind} → (e : Expr d Γ eff t) → (body : Com d (Γ.snoc t) eff u) → motive bodymotive (Com.var e body)) {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} (com : Com d Γ eff t) :
                              motive com
                              Equations
                              • One or more equations did not get rendered due to their size.
                              • Com.recAux' ret var (Com.ret v) = ret v
                              Instances For
                                @[implemented_by Com.recAux']
                                def Com.rec' {d : Dialect} [DialectSignature d] {motive : {Γ : Ctxt d.Ty} → {eff : EffectKind} → {t : d.Ty} → Com d Γ eff tSort u} (ret : {Γ : Ctxt d.Ty} → {t : d.Ty} → {eff : EffectKind} → (v : Γ.Var t) → motive (Com.ret v)) (var : {Γ : Ctxt d.Ty} → {t u : d.Ty} → {eff : EffectKind} → (e : Expr d Γ eff t) → (body : Com d (Γ.snoc t) eff u) → motive bodymotive (Com.var e body)) {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} (com : Com d Γ eff t) :
                                motive com
                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  @[simp]
                                  theorem Com.rec'_ret {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {t : d.Ty} (v : Γ.Var t) {motive : {Γ : Ctxt d.Ty} → {eff : EffectKind} → {t : d.Ty} → Com d Γ eff tSort u_1} {eff : EffectKind} {ret : {Γ : Ctxt d.Ty} → {t : d.Ty} → {eff : EffectKind} → (v : Γ.Var t) → motive (Com.ret v)} {var : {Γ : Ctxt d.Ty} → {t u : d.Ty} → {eff : EffectKind} → (e : Expr d Γ eff t) → (body : Com d (Γ.snoc t) eff u) → motive bodymotive (Com.var e body)} :
                                  Com.rec' ret var (Com.ret v) = ret v
                                  @[simp]
                                  theorem Com.rec'_var {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} {u : d.Ty} (e : Expr d Γ eff t) (body : Com d (Γ.snoc t) eff u) {motive : {Γ : Ctxt d.Ty} → {eff : EffectKind} → {t : d.Ty} → Com d Γ eff tSort u_1} {ret : {Γ : Ctxt d.Ty} → {t : d.Ty} → {eff : EffectKind} → (v : Γ.Var t) → motive (Com.ret v)} {var : {Γ : Ctxt d.Ty} → {t u : d.Ty} → {eff : EffectKind} → (e : Expr d Γ eff t) → (body : Com d (Γ.snoc t) eff u) → motive bodymotive (Com.var e body)} :
                                  Com.rec' ret var (Com.var e body) = var e body (Com.rec' (fun {Γ : Ctxt d.Ty} {t : d.Ty} {eff : EffectKind} => ret) (fun {Γ : Ctxt d.Ty} {t u : d.Ty} {eff : EffectKind} => var) body)
                                  theorem Com.recAux'_eq {d : Dialect} [DialectSignature d] {motive : {Γ : Ctxt d.Ty} → {eff : EffectKind} → {t : d.Ty} → Com d Γ eff tSort u} :
                                  Com.recAux' = Com.rec'
                                  def Com.recPure {d : Dialect} [DialectSignature d] {motive : {Γ : Ctxt d.Ty} → {t : d.Ty} → Com d Γ EffectKind.pure tSort u} (ret : {Γ : Ctxt d.Ty} → {t : d.Ty} → (v : Γ.Var t) → motive (Com.ret v)) (var : {Γ : Ctxt d.Ty} → {t u : d.Ty} → (e : Expr d Γ EffectKind.pure t) → (body : Com d (Γ.snoc t) EffectKind.pure u) → motive bodymotive (Com.var e body)) {Γ : Ctxt d.Ty} {t : d.Ty} (com : Com d Γ EffectKind.pure t) :
                                  motive com

                                  Alternative recursion principle for known-pure Coms

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    def Expr.op {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} (e : Expr d Γ eff ty) :
                                    d.Op
                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      theorem Expr.eff_le {d : Dialect} [DialectSignature d] {eff : EffectKind} {Γ : Ctxt d.Ty} {ty : d.Ty} (e : Expr d Γ eff ty) :
                                      theorem Expr.ty_eq {d : Dialect} [DialectSignature d] {eff : EffectKind} {Γ : Ctxt d.Ty} {ty : d.Ty} (e : Expr d Γ eff ty) :
                                      def Expr.args {d : Dialect} [DialectSignature d] {eff : EffectKind} {Γ : Ctxt d.Ty} {ty : d.Ty} (e : Expr d Γ eff ty) :
                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        def Expr.regArgs {d : Dialect} [DialectSignature d] {eff : EffectKind} {Γ : Ctxt d.Ty} {ty : d.Ty} (e : Expr d Γ eff ty) :
                                        HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 EffectKind.impure t.2) (DialectSignature.regSig e.op)
                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For

                                          Projection equations for Expr

                                          @[simp]
                                          theorem Expr.op_mk {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {ty : d.Ty} {eff : EffectKind} (op : d.Op) (ty_eq : ty = DialectSignature.outTy op) (eff_le : DialectSignature.effectKind op eff) (args : HVector Γ.Var (DialectSignature.sig op)) (regArgs : HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 EffectKind.impure t.2) (DialectSignature.regSig op)) :
                                          (Expr.mk op ty_eq eff_le args regArgs).op = op
                                          @[simp]
                                          theorem Expr.args_mk {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {ty : d.Ty} {eff : EffectKind} (op : d.Op) (ty_eq : ty = DialectSignature.outTy op) (eff_le : DialectSignature.effectKind op eff) (args : HVector Γ.Var (DialectSignature.sig op)) (regArgs : HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 EffectKind.impure t.2) (DialectSignature.regSig op)) :
                                          (Expr.mk op ty_eq eff_le args regArgs).args = args
                                          @[simp]
                                          theorem Expr.regArgs_mk {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {ty : d.Ty} {eff : EffectKind} (op : d.Op) (ty_eq : ty = DialectSignature.outTy op) (eff_le : DialectSignature.effectKind op eff) (args : HVector Γ.Var (DialectSignature.sig op)) (regArgs : HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 EffectKind.impure t.2) (DialectSignature.regSig op)) :
                                          (Expr.mk op ty_eq eff_le args regArgs).regArgs = regArgs

                                          size #

                                          def Com.size {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} :
                                          Com d Γ eff t

                                          The size of a Com is given by the number of let-bindings it contains

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            @[simp]
                                            theorem Com.size_ret {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} {v : Γ.Var t} :
                                            (Com.ret v).size = 0
                                            @[simp]
                                            theorem Com.size_var {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} :
                                            ∀ {ty : d.Ty} {e : Expr d Γ eff ty} {body : Com d (Γ.snoc ty) eff t}, (Com.var e body).size = body.size + 1

                                            Com projections and simple conversions #

                                            def Com.outContext {d : Dialect} [DialectSignature d] {eff : EffectKind} {t : d.Ty} {Γ : Ctxt d.Ty} :
                                            Com d Γ eff tCtxt d.Ty

                                            The outContext of a program is a context which includes variables for all let-bindings of the program. That is, it is the context under which the return value is typed

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For
                                              def Com.outContextDiff {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} (com : Com d Γ eff t) :
                                              Γ.Diff com.outContext

                                              The difference between the context Γ under which com is typed, and the output context of that same com

                                              Equations
                                              • com.outContextDiff = com.size,
                                              Instances For
                                                def Com.outContextHom {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} (com : Com d Γ eff t) :
                                                Γ.Hom com.outContext

                                                com.outContextHom is the canonical homorphism from free variables of com to those same variables in the output context of com

                                                Equations
                                                • com.outContextHom = com.outContextDiff.toHom
                                                Instances For
                                                  def Com.returnVar {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} (com : Com d Γ eff t) :
                                                  com.outContext.Var t

                                                  The return variable of a program

                                                  Equations
                                                  Instances For
                                                    @[simp]
                                                    theorem Com.outContext_ret {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {t : d.Ty} {eff : EffectKind} (v : Γ.Var t) :
                                                    (Com.ret v).outContext = Γ
                                                    @[simp]
                                                    theorem Com.outContext_var {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {t : d.Ty} {u : d.Ty} {eff : EffectKind} (e : Expr d Γ eff t) (body : Com d (Γ.snoc t) eff u) :
                                                    (Com.var e body).outContext = body.outContext
                                                    @[simp]
                                                    theorem Com.outContextHom_ret {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {t : d.Ty} {eff : EffectKind} (v : Γ.Var t) :
                                                    (Com.ret v).outContextHom = Ctxt.Hom.id
                                                    @[simp]
                                                    theorem Com.outContextHom_var {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} :
                                                    ∀ {ty : d.Ty} {e : Expr d Γ eff ty} {body : Com d (Γ.snoc ty) eff t}, (Com.var e body).outContextHom = body.outContextHom.unSnoc
                                                    @[simp]
                                                    theorem Com.returnVar_ret {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} {v : Γ.Var t} :
                                                    (Com.ret v).returnVar = v
                                                    @[simp]
                                                    theorem Com.returnVar_var {d : Dialect} [DialectSignature d] {eff : EffectKind} :
                                                    ∀ {Γ : Ctxt d.Ty} {ty : d.Ty} {e : Expr d Γ eff ty} {a : d.Ty} {body : Com d (Γ.snoc ty) eff a}, (Com.var e body).returnVar = body.returnVar

                                                    Lets.addComToEnd and Com.toLets #

                                                    @[irreducible]
                                                    def Lets.addComToEnd {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {ty : d.Ty} {Γ_out : Ctxt d.Ty} {eff : EffectKind} (lets : Lets d Γ_in eff Γ_out) (com : Com d Γ_out eff ty) :
                                                    Lets d Γ_in eff com.outContext

                                                    Add a Com to the end of a sequence of lets

                                                    Equations
                                                    • lets.addComToEnd (Com.ret v) = lets
                                                    • lets.addComToEnd (Com.var e body) = (lets.var e).addComToEnd body
                                                    Instances For
                                                      def Com.toLets {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} (com : Com d Γ eff t) :
                                                      Lets d Γ eff com.outContext

                                                      The let-bindings of a program

                                                      Equations
                                                      • com.toLets = Lets.nil.addComToEnd com
                                                      Instances For
                                                        @[simp]
                                                        theorem Lets.addComToEnd_ret {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {t : d.Ty} {v : Γ_out.Var t} {lets : Lets d Γ_in eff Γ_out} :
                                                        lets.addComToEnd (Com.ret v) = lets
                                                        @[simp]
                                                        theorem Lets.addComToEnd_var {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {t : d.Ty} :
                                                        ∀ {ty : d.Ty} {e : Expr d Γ_out eff ty} {lets : Lets d Γ_in eff Γ_out} {com : Com d (Γ_out.snoc ty) eff t}, lets.addComToEnd (Com.var e com) = (lets.var e).addComToEnd com
                                                        @[simp]
                                                        theorem Com.toLets_ret {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} {v : Γ.Var t} :
                                                        (Com.ret v).toLets = Lets.nil

                                                        denote #

                                                        Denote expressions, programs, and sequences of lets

                                                        def HVector.denote {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {l : List (Ctxt d.Ty × d.Ty)} (T : HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 EffectKind.impure t.2) l) :
                                                        HVector (fun (t : Ctxt d.Ty × d.Ty) => t.1.ValuationEffectKind.impure.toMonad d.m t.2) l
                                                        Equations
                                                        • HVector.nil.denote = HVector.nil
                                                        • (v::ₕvs).denote = (v.denote::ₕvs.denote)
                                                        Instances For
                                                          def Expr.denote {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} (e : Expr d Γ eff ty) (Γv : Γ.Valuation) :
                                                          eff.toMonad d.m ty
                                                          Equations
                                                          Instances For
                                                            def Com.denote {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} :
                                                            Com d Γ eff tyΓ.Valuationeff.toMonad d.m ty
                                                            Equations
                                                            Instances For
                                                              def Com.denoteLets {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} (com : Com d Γ eff ty) (Γv : Γ.Valuation) :
                                                              eff.toMonad d.m com.outContext.Valuation

                                                              Denote just the let bindings of com, transforming a valuation for Γ into a valuation for the output context of com

                                                              Equations
                                                              Instances For
                                                                def Expr.denoteImpure {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} (e : Expr d Γ eff ty) (Γv : Γ.Valuation) :

                                                                Denote an Expr in an unconditionally impure fashion

                                                                Equations
                                                                • e.denoteImpure Γv = liftM (e.denote Γv)
                                                                Instances For
                                                                  def Com.denoteImpure {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} :
                                                                  Com d Γ eff tyΓ.ValuationEffectKind.impure.toMonad d.m ty

                                                                  Denote a Com in an unconditionally impure fashion

                                                                  Equations
                                                                  Instances For
                                                                    def Lets.denote {d : Dialect} [TyDenote d.Ty] [Monad d.m] {Γ₁ : Ctxt d.Ty} {eff : EffectKind} [DialectSignature d] [DialectDenote d] {Γ₂ : Ctxt d.Ty} (lets : Lets d Γ₁ eff Γ₂) (Γ₁'v : Γ₁.Valuation) :
                                                                    eff.toMonad d.m Γ₂.Valuation
                                                                    Equations
                                                                    • Lets.nil.denote Γ₁'v = pure Γ₁'v
                                                                    • (lets'.var e).denote Γ₁'v = do let Γ₂'vlets'.denote Γ₁'v let ve.denote Γ₂'v pure (Γ₂'v::ᵥv)
                                                                    Instances For
                                                                      @[reducible, inline]
                                                                      abbrev Lets.denotePure {d : Dialect} [TyDenote d.Ty] [Monad d.m] {Γ₁ : Ctxt d.Ty} {Γ₂ : Ctxt d.Ty} [DialectSignature d] [DialectDenote d] :
                                                                      Lets d Γ₁ EffectKind.pure Γ₂Γ₁.ValuationΓ₂.Valuation

                                                                      denotePure is a specialization of denote for pure Lets. Theorems and definitions should always be phrased in terms of the latter.

                                                                      However, denotePure behaves slighly better when it comes to congruences, since congr does not realize that pure.toMonad d.m (Valuation _) is just Valuation _, and thus a function. Therefore, if a goalstate is ⊢ lets.denote ... = lets.denote ..., and lets is pure, then to use the congruence, you can do: rw [← Lets.denotePure]; congr

                                                                      Equations
                                                                      • Lets.denotePure = Lets.denote
                                                                      Instances For
                                                                        def Lets.denoteImpure {d : Dialect} [TyDenote d.Ty] [Monad d.m] {Γ₁ : Ctxt d.Ty} {eff : EffectKind} [DialectSignature d] [DialectDenote d] {Γ₂ : Ctxt d.Ty} (lets : Lets d Γ₁ eff Γ₂) (Γ₁'v : Γ₁.Valuation) :
                                                                        EffectKind.impure.toMonad d.m Γ₂.Valuation

                                                                        Denote a Lets in an unconditionally impure fashion

                                                                        Equations
                                                                        • Lets.nil.denoteImpure Γ₁'v = EffectKind.impure.return Γ₁'v
                                                                        • (lets'.var e).denoteImpure Γ₁'v = do let Γ₂'vliftM (lets'.denote Γ₁'v) let vliftM (e.denote Γ₂'v) pure (Γ₂'v::ᵥv)
                                                                        • (lets'.var e).denoteImpure Γ₁'v = do let Γ₂'vliftM (lets'.denote Γ₁'v) let vliftM (e.denote Γ₂'v) pure (Γ₂'v::ᵥv)
                                                                        Instances For
                                                                          def Zipper.denote {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {ty : d.Ty} (zip : Zipper d Γ_in eff Γ_out ty) (V_in : Γ_in.Valuation) :
                                                                          eff.toMonad d.m ty

                                                                          The denotation of a zipper is a composition of the denotations of the constituent Lets and Com

                                                                          Equations
                                                                          • zip.denote V_in = zip.top.denote V_in >>= zip.bot.denote
                                                                          Instances For
                                                                            theorem Expr.denote_unfold {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {ty : d.Ty} {eff : EffectKind} {Γ : Ctxt d.Ty} (op : d.Op) (ty_eq : ty = DialectSignature.outTy op) (eff_le : DialectSignature.effectKind op eff) (args : HVector Γ.Var (DialectSignature.sig op)) (regArgs : HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 EffectKind.impure t.2) (DialectSignature.regSig op)) (Γv : Γ.Valuation) :
                                                                            (Expr.mk op ty_eq eff_le args regArgs).denote Γv = EffectKind.liftEffect eff_le (DialectDenote.denote op (HVector.map (fun (x : d.Ty) (v : Γ.Var x) => Γv v) args) regArgs.denote)
                                                                            theorem Com.denote_unfold {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {ty : d.Ty} {eff : EffectKind} {Γ : Ctxt d.Ty} (op : d.Op) (ty_eq : ty = DialectSignature.outTy op) (eff_le : DialectSignature.effectKind op eff) (args : HVector Γ.Var (DialectSignature.sig op)) (regArgs : HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 EffectKind.impure t.2) (DialectSignature.regSig op)) (Γv : Γ.Valuation) :
                                                                            (Expr.mk op ty_eq eff_le args regArgs).denote Γv = EffectKind.liftEffect eff_le (DialectDenote.denote op (HVector.map (fun (x : d.Ty) (v : Γ.Var x) => Γv v) args) regArgs.denote)

                                                                            Equation lemma to unfold denote, which does not unfold correctly due to the presence of the coercion ty_eq and the mutual definition.

                                                                            simp-lemmas about denote functions

                                                                            @[simp]
                                                                            theorem HVector.denote_nil {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] (T : HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 EffectKind.impure t.2) []) :
                                                                            T.denote = HVector.nil
                                                                            @[simp]
                                                                            theorem HVector.denote_cons {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] (t : Ctxt d.Ty × d.Ty) (ts : List (Ctxt d.Ty × d.Ty)) (a : Com d t.1 EffectKind.impure t.2) (as : HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 EffectKind.impure t.2) ts) :
                                                                            (a::ₕas).denote = (a.denote::ₕas.denote)
                                                                            @[simp]
                                                                            theorem Com.denote_ret {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {t : d.Ty} {eff : EffectKind} (Γ : Ctxt d.Ty) (x : Γ.Var t) :
                                                                            (Com.ret x).denote = fun (Γv : Γ.Valuation) => pure (Γv x)
                                                                            @[simp]
                                                                            theorem Com.denote_var {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {α : d.Ty} :
                                                                            ∀ {a : d.Ty} {body : Com d (Γ.snoc α) eff a} [inst : LawfulMonad d.m] {e : Expr d Γ eff α}, (Com.var e body).denote = fun (Γv : Γ.Valuation) => do let ve.denote Γv body.denote (Γv::ᵥv)
                                                                            @[simp]
                                                                            theorem Com.denoteLets_var {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} {u : d.Ty} (e : Expr d Γ eff t) (body : Com d (Γ.snoc t) eff u) [LawfulMonad d.m] :
                                                                            (Com.var e body).denoteLets = fun (V : Γ.Valuation) => do let Vee.denote V body.denoteLets (V::ᵥVe)
                                                                            @[simp]
                                                                            theorem Com.denoteImpure_ret {d : Dialect} [DialectSignature d] [TyDenote d.Ty] {t : d.Ty} {eff : EffectKind} [Monad d.m] [DialectDenote d] {Γ : Ctxt d.Ty} (x : Γ.Var t) :
                                                                            (Com.ret x).denoteImpure = fun (Γv : Γ.Valuation) => pure (Γv x)
                                                                            @[simp]
                                                                            theorem Com.denoteImpure_body {d : Dialect} [DialectSignature d] [TyDenote d.Ty] {eff : EffectKind} {te : d.Ty} {tbody : d.Ty} [Monad d.m] [DialectDenote d] {Γ : Ctxt d.Ty} (e : Expr d Γ eff te) (body : Com d (Γ.snoc te) eff tbody) :
                                                                            (Com.var e body).denoteImpure = fun (Γv : Γ.Valuation) => do let xe.denoteImpure Γv liftM (body.denote (Γv::ᵥx))
                                                                            @[simp]
                                                                            theorem Lets.denote_nil {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {eff : EffectKind} {Γ : Ctxt d.Ty} :
                                                                            Lets.nil.denote = fun (x : Γ.Valuation) => pure x
                                                                            @[simp]
                                                                            theorem Lets.denote_var {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] [LawfulMonad d.m] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {t : d.Ty} {lets : Lets d Γ_in eff Γ_out} {e : Expr d Γ_out eff t} :
                                                                            (lets.var e).denote = fun (V_in : Γ_in.Valuation) => do let V_outlets.denote V_in let xe.denote V_out pure (V_out::ᵥx)
                                                                            @[simp]
                                                                            theorem Lets.denote_addComToEnd {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] [LawfulMonad d.m] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {t : d.Ty} {lets : Lets d Γ_in eff Γ_out} {com : Com d Γ_out eff t} :
                                                                            (lets.addComToEnd com).denote = fun (V : Γ_in.Valuation) => do let Vletslets.denote V let Vbodycom.denoteLets Vlets pure Vbody
                                                                            @[simp]
                                                                            theorem Com.denoteLets_ret {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} {v : Γ.Var t} :
                                                                            (Com.ret v).denoteLets = fun (V : Γ.Valuation) => pure V
                                                                            theorem Com.denoteLets_eq {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] [LawfulMonad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} {com : Com d Γ eff t} :
                                                                            com.denoteLets = com.toLets.denote

                                                                            changeVars #

                                                                            Map a context homomorphism over a Expr/Com. That is, substitute variables.

                                                                            def Expr.changeVars {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {Γ' : Ctxt d.Ty} (varsMap : Γ.Hom Γ') {ty : d.Ty} (e : Expr d Γ eff ty) :
                                                                            Expr d Γ' eff ty
                                                                            Equations
                                                                            Instances For
                                                                              def Com.changeVars {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} {Γ' : Ctxt d.Ty} :
                                                                              Com d Γ eff tyΓ.Hom Γ'Com d Γ' eff ty
                                                                              Equations
                                                                              • (Com.ret v).changeVars = fun (varsMap : Γ.Hom Γ') => Com.ret (varsMap v)
                                                                              • (Com.var e body).changeVars = fun (varsMap : Γ.Hom Γ') => Com.var (Expr.changeVars varsMap e) (body.changeVars fun (x : d.Ty) (v : (Γ.snoc α).Var x) => varsMap.snocMap v)
                                                                              Instances For

                                                                                simp-lemmas about changeVars

                                                                                @[simp]
                                                                                theorem Expr.denote_changeVars {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {eff : EffectKind} {ty : d.Ty} {Γ : Ctxt d.Ty} {Γ' : Ctxt d.Ty} (varsMap : Γ.Hom Γ') (e : Expr d Γ eff ty) :
                                                                                (Expr.changeVars varsMap e).denote = fun (Γ'v : Γ'.Valuation) => e.denote (Γ'v.comap varsMap)
                                                                                @[simp]
                                                                                theorem Com.changeVars_ret {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {t : d.Ty} {eff : EffectKind} {Δ : Ctxt d.Ty} (v : Γ.Var t) :
                                                                                (Com.ret v).changeVars = fun (map : Γ.Hom Δ) => Com.ret (map v)
                                                                                @[simp]
                                                                                theorem Com.changeVars_var {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} {u : d.Ty} {Δ : Ctxt d.Ty} (e : Expr d Γ eff t) (body : Com d (Γ.snoc t) eff u) :
                                                                                (Com.var e body).changeVars = fun (map : Γ.Hom Δ) => Com.var (Expr.changeVars map e) (body.changeVars map.snocMap)
                                                                                @[simp]
                                                                                theorem Com.outContext_changeVars_ret {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} :
                                                                                ∀ {t : d.Ty} {v : Γ.Var t} {Γ' : Ctxt d.Ty} (varsMap : Γ.Hom Γ'), Com d Γ eff ty((Com.ret v).changeVars varsMap).outContext = Γ'
                                                                                @[simp]
                                                                                theorem Com.denote_changeVars {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} {Γ' : Ctxt d.Ty} (varsMap : Γ.Hom Γ') (c : Com d Γ eff ty) :
                                                                                (c.changeVars varsMap).denote = c.denote fun (V : Γ'.Valuation) => V.comap varsMap
                                                                                @[simp]
                                                                                theorem Com.denote_changeVars' {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} {Γ' : Ctxt d.Ty} (varsMap : Γ.Hom Γ') (c : Com d Γ eff ty) :
                                                                                (c.changeVars varsMap).denote = fun (V : Γ'.Valuation) => c.denote (V.comap varsMap)
                                                                                def Com.outContext_changeVars_hom {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} {Δ : Ctxt d.Ty} {map : Γ.Hom Δ} (map_inv : Δ.Hom Γ) {c : Com d Γ eff ty} :
                                                                                (c.changeVars map).outContext.Hom c.outContext
                                                                                Equations
                                                                                Instances For
                                                                                  @[simp]
                                                                                  theorem Com.denoteLets_returnVar_pure {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {ty : d.Ty} (c : Com d Γ EffectKind.pure ty) (Γv : Γ.Valuation) :
                                                                                  c.denoteLets Γv c.returnVar = c.denote Γv
                                                                                  @[simp]
                                                                                  theorem Expr.changeVars_changeVars {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} {Δ : Ctxt d.Ty} {Ξ : Ctxt d.Ty} (e : Expr d Γ eff ty) (f : Γ.Hom Δ) (g : Δ.Hom Ξ) :

                                                                                  FlatCom #

                                                                                  An alternative representation of a program as a Lets with a return Var

                                                                                  structure FlatCom (d : Dialect) [DialectSignature d] (Γ_in : Ctxt d.Ty) (eff : EffectKind) (Γ_out : Ctxt d.Ty) (ty : d.Ty) :

                                                                                  FlatCom Γ eff Δ ty represents a program as a sequence Lets Γ eff Δ and a Var Δ ty. This is isomorphic to Com Γ eff ty, where Δ is com.outContext

                                                                                  • lets : Lets d Γ_in eff Γ_out
                                                                                  • ret : Γ_out.Var ty
                                                                                  Instances For
                                                                                    def FlatCom.denoteLets {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {t : d.Ty} (flatCom : FlatCom d Γ eff Γ_out t) (Γv : Γ.Valuation) :
                                                                                    eff.toMonad d.m Γ_out.Valuation

                                                                                    Denote the Lets of the FlatICom

                                                                                    Equations
                                                                                    • flatCom.denoteLets Γv = flatCom.lets.denote Γv
                                                                                    Instances For
                                                                                      @[reducible, inline]
                                                                                      abbrev FlatCom.denote {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {t : d.Ty} [DialectDenote d] (flatCom : FlatCom d Γ eff Γ_out t) (Γv : Γ.Valuation) :
                                                                                      eff.toMonad d.m t

                                                                                      Denote the lets and the ret of the FlatCom. This is equal to denoting the Com

                                                                                      Equations
                                                                                      • flatCom.denote Γv = do let Γ'vflatCom.lets.denote Γv pure (Γ'v flatCom.ret)
                                                                                      Instances For
                                                                                        theorem FlatCom.denoteLets_eq {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {t : d.Ty} [DialectDenote d] (flatCom : FlatCom d Γ eff Γ_out t) :
                                                                                        flatCom.denoteLets = fun (Γv : Γ.Valuation) => flatCom.lets.denote Γv
                                                                                        theorem FlatCom.denote_eq {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [Monad d.m] [LawfulMonad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {t : d.Ty} [DialectDenote d] (flatCom : FlatCom d Γ eff Γ_out t) :
                                                                                        flatCom.denote = fun (Γv : Γ.Valuation) => do let Γ'vflatCom.lets.denote Γv pure (Γ'v flatCom.ret)

                                                                                        casting of expressions and purity #

                                                                                        castPureToEff #

                                                                                        def Expr.changeEffect {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {t : d.Ty} {eff₁ : EffectKind} {eff₂ : EffectKind} (h : eff₁ eff₂) :
                                                                                        Expr d Γ eff₁ tExpr d Γ eff₂ t

                                                                                        Change the effect of an expression into another effect that is "higher" in the hierarchy. Generally used to change a pure expression into an impure one, but it is useful to have this phrased more generically

                                                                                        Equations
                                                                                        Instances For
                                                                                          def Com.changeEffect {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {t : d.Ty} {eff₁ : EffectKind} {eff₂ : EffectKind} (h : eff₁ eff₂) :
                                                                                          Com d Γ eff₁ tCom d Γ eff₂ t

                                                                                          Change the effect of a program into another effect that is "higher" in the hierarchy. Generally used to change a pure program into an impure one, but it is useful to have this phrased more generically

                                                                                          Equations
                                                                                          • One or more equations did not get rendered due to their size.
                                                                                          Instances For
                                                                                            def Lets.changeEffect {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} {eff₁ : EffectKind} {eff₂ : EffectKind} (h : eff₁ eff₂) :
                                                                                            Lets d Γ_in eff₁ Γ_outLets d Γ_in eff₂ Γ_out

                                                                                            Change the effect of a sequence of lets into another effect that is "higher" in the hierarchy. Generally used to change pure into impure, but it is useful to have this phrased more generically

                                                                                            Instances For
                                                                                              def Expr.castPureToEff {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {t : d.Ty} (eff : EffectKind) :
                                                                                              Expr d Γ EffectKind.pure tExpr d Γ eff t

                                                                                              cast a pure Expr into a possibly impure expression

                                                                                              Equations
                                                                                              Instances For
                                                                                                def Com.castPureToEff {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {t : d.Ty} (eff : EffectKind) :
                                                                                                Com d Γ EffectKind.pure tCom d Γ eff t
                                                                                                Equations
                                                                                                Instances For
                                                                                                  def Lets.castPureToEff {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} (eff : EffectKind) :
                                                                                                  Lets d Γ_in EffectKind.pure Γ_outLets d Γ_in eff Γ_out
                                                                                                  Equations
                                                                                                  Instances For
                                                                                                    def Com.letPure {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {t : d.Ty} {eff : EffectKind} {u : d.Ty} (e : Expr d Γ EffectKind.pure t) (body : Com d (Γ.snoc t) eff u) :
                                                                                                    Com d Γ eff u

                                                                                                    A wrapper around Com.var that allows for a pure expression to be added to an otherwise impure program, using Expr.castPureToEff

                                                                                                    Equations
                                                                                                    Instances For
                                                                                                      def Com.letSup {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff₁ : EffectKind} {t : d.Ty} {eff₂ : EffectKind} {u : d.Ty} (e : Expr d Γ eff₁ t) (body : Com d (Γ.snoc t) eff₂ u) :
                                                                                                      Com d Γ (eff₁ eff₂) u

                                                                                                      letSup e body allows us to combine an expression and body with different effects, by returning a Com whose effect is their join/supremum

                                                                                                      Equations
                                                                                                      Instances For
                                                                                                        @[simp]
                                                                                                        theorem Com.castPureToEff_ret {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {ty : d.Ty} {v : Γ.Var ty} {eff : EffectKind} :
                                                                                                        @[simp]
                                                                                                        theorem Com.castPureToEff_var {d : Dialect} [DialectSignature d] {ty : d.Ty} {Γ : Ctxt d.Ty} {eTy : d.Ty} {eff : EffectKind} {com : Com d (Γ.snoc eTy) EffectKind.pure ty} {e : Expr d Γ EffectKind.pure eTy} :
                                                                                                        @[simp]
                                                                                                        theorem Lets.castPureToEff_nil {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {eff : EffectKind} :
                                                                                                        Lets.castPureToEff eff Lets.nil = Lets.nil
                                                                                                        @[simp]
                                                                                                        theorem Lets.castPureToEff_var {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} {eTy : d.Ty} {eff : EffectKind} {lets : Lets d Γ_in EffectKind.pure Γ_out} {e : Expr d Γ_out EffectKind.pure eTy} :
                                                                                                        Lets.castPureToEff eff (lets.var e) = (Lets.castPureToEff eff lets).var (Expr.castPureToEff eff e)
                                                                                                        @[simp]
                                                                                                        theorem Com.outContext_castPureToEff {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {ty : d.Ty} {eff : EffectKind} {com : Com d Γ EffectKind.pure ty} :
                                                                                                        (Com.castPureToEff eff com).outContext = com.outContext
                                                                                                        @[simp]
                                                                                                        theorem Com.size_castPureToEff {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {ty : d.Ty} {eff : EffectKind} {com : Com d Γ EffectKind.pure ty} :
                                                                                                        (Com.castPureToEff eff com).size = com.size

                                                                                                        castPureToEff does not change the size of a Com

                                                                                                        @[simp]
                                                                                                        theorem Lets.addComToEnd_castPureToEff {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} {ty : d.Ty} {eff : EffectKind} {lets : Lets d Γ_in EffectKind.pure Γ_out} {com : Com d Γ_out EffectKind.pure ty} :
                                                                                                        (Lets.castPureToEff eff lets).addComToEnd (Com.castPureToEff eff com) = cast (Lets.castPureToEff eff (lets.addComToEnd com))
                                                                                                        @[simp]
                                                                                                        theorem Com.toLets_castPureToEff {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {ty : d.Ty} {eff : EffectKind} {com : Com d Γ EffectKind.pure ty} :
                                                                                                        (Com.castPureToEff eff com).toLets = cast (Lets.castPureToEff eff com.toLets)
                                                                                                        @[simp]
                                                                                                        theorem Com.returnVar_castPureToEff {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {ty : d.Ty} {eff : EffectKind} {com : Com d Γ EffectKind.pure ty} :
                                                                                                        (Com.castPureToEff eff com).returnVar = Ctxt.Var.castCtxt com.returnVar

                                                                                                        denotations of castPureToEff

                                                                                                        @[simp]
                                                                                                        theorem Expr.denote_castPureToEff {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {t : d.Ty} {eff : EffectKind} {e : Expr d Γ EffectKind.pure t} :
                                                                                                        (Expr.castPureToEff eff e).denote = fun (V : Γ.Valuation) => pure (e.denote V)
                                                                                                        @[simp]
                                                                                                        theorem Com.denote_castPureToEff {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] [LawfulMonad d.m] {Γ : Ctxt d.Ty} {ty : d.Ty} {eff : EffectKind} {com : Com d Γ EffectKind.pure ty} :
                                                                                                        (Com.castPureToEff eff com).denote = fun (V : Γ.Valuation) => pure (com.denote V)
                                                                                                        @[simp]
                                                                                                        theorem Com.denoteLets_castPureToEff {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] [LawfulMonad d.m] {Γ : Ctxt d.Ty} {ty : d.Ty} {eff : EffectKind} {com : Com d Γ EffectKind.pure ty} :
                                                                                                        (Com.castPureToEff eff com).denoteLets = fun (V : Γ.Valuation) => pure (Ctxt.Valuation.comap (com.denoteLets V) fun (x : d.Ty) (v : (Com.castPureToEff eff com).outContext.Var x) => Ctxt.Var.castCtxt v)

                                                                                                        Expr.HasPureOp and Expr.toPure? #

                                                                                                        def Expr.HasPureOp {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} (e : Expr d Γ eff ty) :

                                                                                                        Whether the operation of an expression is pure (which might be evaluated impurely)

                                                                                                        Equations
                                                                                                        Instances For
                                                                                                          instance instDecidableHasPureOp {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} (e : Expr d Γ eff t) :
                                                                                                          Decidable e.HasPureOp

                                                                                                          e.HasPureOp is decidable

                                                                                                          Equations
                                                                                                          @[simp]
                                                                                                          def Expr.toPure? {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} (e : Expr d Γ eff ty) :

                                                                                                          Attempt to convert a possibly impure expression into a pure expression. If the expression's operation is impure, return none

                                                                                                          Equations
                                                                                                          Instances For
                                                                                                            theorem Expr.HasPureOp_of_pure {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {t : d.Ty} (e : Expr d Γ EffectKind.pure t) :
                                                                                                            e.HasPureOp

                                                                                                            The operation of a pure expression is necessarily pure

                                                                                                            theorem Expr.denote_mk_of_pure {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {ty : d.Ty} {eff₂ : EffectKind} {Γ : Ctxt d.Ty} {op : d.Op} (eff_eq : DialectSignature.effectKind op = EffectKind.pure) (ty_eq : ty = DialectSignature.outTy op) (eff_le : DialectSignature.effectKind op eff₂) (args : HVector Γ.Var (DialectSignature.sig op)) (regArgs : HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 EffectKind.impure t.2) (DialectSignature.regSig op)) :
                                                                                                            (Expr.mk op ty_eq eff_le args regArgs).denote = fun (Γv : Γ.Valuation) => let d_1 := cast (DialectDenote.denote op (HVector.map (fun (x : d.Ty) (v : Γ.Var x) => Γv v) args) regArgs.denote); match eff₂, eff_le with | EffectKind.pure, eff_le => d_1 | EffectKind.impure, eff_le => pure d_1

                                                                                                            Rewrite theorem for an expression with a pure operation (which might be evaluated impurely)

                                                                                                            theorem Expr.denote_of_pure {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} {e : Expr d Γ eff ty} (eff_eq : e.HasPureOp) :
                                                                                                            e.denote = fun (Γv : Γ.Valuation) => let d_1 := cast (DialectDenote.denote e.op (HVector.map (fun (x : d.Ty) (v : Γ.Var x) => Γv v) e.args) e.regArgs.denote); match eff, e, eff_eq with | EffectKind.pure, e, eff_eq => d_1 | EffectKind.impure, e, eff_eq => pure d_1
                                                                                                            @[simp]
                                                                                                            theorem Expr.denote_castPureToEff_impure_eq {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {t : d.Ty} [LawfulMonad d.m] (e : Expr d Γ EffectKind.pure t) :
                                                                                                            (Expr.castPureToEff EffectKind.impure e).denote = fun (Γv : Γ.Valuation) => pure (e.denote Γv)

                                                                                                            casting an expr to an impure expr and running it equals running it purely and returning the value

                                                                                                            theorem Expr.hasPureOp_of_toPure?_isSome {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} {e : Expr d Γ eff ty} (h : e.toPure?.isSome = true) :
                                                                                                            e.HasPureOp
                                                                                                            theorem Expr.denote_toPure? {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} {e : Expr d Γ eff ty} {e' : Expr d Γ EffectKind.pure ty} (he : e.toPure? = some e') :
                                                                                                            e.denote = match (motive := (eff : EffectKind) → {e : Expr d Γ eff ty} → e.toPure? = some e'Γ.Valuationeff.toMonad d.m ty) eff, e, he with | EffectKind.pure, e, he => e'.denote | EffectKind.impure, e, he => pure e'.denote

                                                                                                            The denotation of toPure?

                                                                                                            Combining Lets and Com #

                                                                                                            Various machinery to combine Lets and Coms in various ways.

                                                                                                            def Com.toFlatCom {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {t : d.Ty} (com : Com d Γ EffectKind.pure t) :
                                                                                                            FlatCom d Γ EffectKind.pure com.outContext t

                                                                                                            Convert a Com into a FlatCom

                                                                                                            Equations
                                                                                                            • com.toFlatCom = { lets := com.toLets, ret := com.returnVar }
                                                                                                            Instances For
                                                                                                              def Zipper.toCom {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_mid : Ctxt d.Ty} {ty : d.Ty} (zip : Zipper d Γ_in eff Γ_mid ty) :
                                                                                                              Com d Γ_in eff ty

                                                                                                              Recombine a zipper into a single program by adding the lets to the beginning of the com

                                                                                                              Equations
                                                                                                              Instances For
                                                                                                                def Zipper.toCom.go {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} {Γ_mid : Ctxt d.Ty} :
                                                                                                                Lets d Γ_in eff Γ_midCom d Γ_mid eff tyCom d Γ_in eff ty
                                                                                                                Equations
                                                                                                                Instances For
                                                                                                                  def Zipper.insertCom {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_mid : Ctxt d.Ty} {ty : d.Ty} {newTy : d.Ty} (zip : Zipper d Γ_in eff Γ_mid ty) (v : Γ_mid.Var newTy) (newCom : Com d Γ_mid eff newTy) :
                                                                                                                  Zipper d Γ_in eff newCom.outContext ty

                                                                                                                  Add a Com directly before the current position of a zipper, while reassigning every occurence of a given free variable (v) of zip.com to the output of the new Com

                                                                                                                  Equations
                                                                                                                  • zip.insertCom v newCom = { top := zip.top.addComToEnd newCom, bot := zip.bot.changeVars (newCom.outContextHom.with v newCom.returnVar) }
                                                                                                                  Instances For
                                                                                                                    def Zipper.insertPureCom {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_mid : Ctxt d.Ty} {ty : d.Ty} {newTy : d.Ty} (zip : Zipper d Γ_in eff Γ_mid ty) (v : Γ_mid.Var newTy) (newCom : Com d Γ_mid EffectKind.pure newTy) :
                                                                                                                    Zipper d Γ_in eff newCom.outContext ty

                                                                                                                    Add a pure Com directly before the current position of a possibly impure zipper, while r eassigning every occurence of a given free variable (v) of zip.com to the output of the new Com

                                                                                                                    This is a wrapper around insertCom (which expects newCom to have the same effect as zip) and castPureToEff

                                                                                                                    Equations
                                                                                                                    Instances For

                                                                                                                      simp-lemmas

                                                                                                                      @[simp]
                                                                                                                      theorem Zipper.toCom_nil {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} {com : Com d Γ eff ty} :
                                                                                                                      { top := Lets.nil, bot := com }.toCom = com
                                                                                                                      @[simp]
                                                                                                                      theorem Zipper.toCom_var {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_mid : Ctxt d.Ty} :
                                                                                                                      ∀ {ty : d.Ty} {e : Expr d Γ_mid eff ty} {a : d.Ty} {com : Com d (Γ_mid.snoc ty) eff a} {lets : Lets d Γ_in eff Γ_mid}, { top := lets.var e, bot := com }.toCom = { top := lets, bot := Com.var e com }.toCom
                                                                                                                      @[simp]
                                                                                                                      theorem Zipper.denote_toCom {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_mid : Ctxt d.Ty} {ty : d.Ty} [LawfulMonad d.m] (zip : Zipper d Γ_in eff Γ_mid ty) :
                                                                                                                      zip.toCom.denote = zip.denote
                                                                                                                      @[simp]
                                                                                                                      theorem Zipper.denote_mk {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {ty : d.Ty} {lets : Lets d Γ_in eff Γ_out} {com : Com d Γ_out eff ty} :
                                                                                                                      { top := lets, bot := com }.denote = fun (V : Γ_in.Valuation) => lets.denote V >>= com.denote
                                                                                                                      theorem Zipper.denote_insertCom {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [DecidableEq d.Ty] [Monad d.m] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_mid : Ctxt d.Ty} {ty₁ : d.Ty} {newTy : d.Ty} {v : Γ_mid.Var newTy} {zip : Zipper d Γ_in eff Γ_mid ty₁} {newCom : Com d Γ_mid eff newTy} [LawfulMonad d.m] :
                                                                                                                      (zip.insertCom v newCom).denote = fun (V_in : Γ_in.Valuation) => do let V_midzip.top.denote V_in let V_newMidnewCom.denoteLets V_mid zip.bot.denote (V_newMid.comap (newCom.outContextHom.with v newCom.returnVar))
                                                                                                                      @[simp]
                                                                                                                      theorem Zipper.denoteLets_eqRec_Γ_mid {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_mid : Ctxt d.Ty} {ty : d.Ty} {Γ_mid' : Ctxt d.Ty} {zip : Zipper d Γ_in eff Γ_mid ty} (h : Γ_mid = Γ_mid') :
                                                                                                                      (hzip).denote = zip.denote

                                                                                                                      Casting the intermediate context is not relevant for the denotation

                                                                                                                      theorem Zipper.denote_insertPureCom {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [DecidableEq d.Ty] [Monad d.m] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_mid : Ctxt d.Ty} {ty₁ : d.Ty} {newTy : d.Ty} {v : Γ_mid.Var newTy} {zip : Zipper d Γ_in eff Γ_mid ty₁} {newCom : Com d Γ_mid EffectKind.pure newTy} [LawfulMonad d.m] :
                                                                                                                      (zip.insertPureCom v newCom).denote = fun (V_in : Γ_in.Valuation) => do let V_midzip.top.denote V_in zip.bot.denote (Ctxt.Valuation.comap (newCom.denoteLets V_mid) (newCom.outContextHom.with v newCom.returnVar))

                                                                                                                      Semantic preservation of Zipper.insertPureCom #

                                                                                                                      Generally, we don't intend for insertPureCom to change the semantics of the zipper'd program. We characterize the condition for this intended property by proving denote_insertPureCom_eq_of, which states that if the reassigned variable v in the original top of the zipper is semantically equivalent to the return value of the inserted program newCom, then the denotation of the zipper after insertion agrees with the original zipper.

                                                                                                                      @[simp]
                                                                                                                      theorem Com.denoteLets_outContextHom {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {ty : d.Ty} (com : Com d Γ EffectKind.pure ty) (V : Γ.Valuation) {vTy : d.Ty} (v : Γ.Var vTy) :
                                                                                                                      com.denoteLets V (com.outContextHom v) = V v

                                                                                                                      Denoting any of the free variables of a program through Com.denoteLets just returns the assignment of that variable in the input valuation

                                                                                                                      @[simp]
                                                                                                                      theorem Ctxt.Valuation.comap_outContextHom_denoteLets {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {ty : d.Ty} {com : Com d Γ EffectKind.pure ty} {V : Γ.Valuation} :
                                                                                                                      Ctxt.Valuation.comap (com.denoteLets V) com.outContextHom = V

                                                                                                                      Inserting multiple programs with Zipper.foldInsert #

                                                                                                                      Random Access for Lets #

                                                                                                                      Get the let-binding that correponds to a given variable v, so long as the binding's operation is pure

                                                                                                                      def Lets.getPureExprAux {d : Dialect} [DialectSignature d] {eff : EffectKind} {Γ₁ : Ctxt d.Ty} {Γ₂ : Ctxt d.Ty} {t : d.Ty} :
                                                                                                                      Lets d Γ₁ eff Γ₂(v : Γ₂.Var t) → Option (Expr d (Γ₂.dropUntil v) EffectKind.pure t)

                                                                                                                      Get the Expr that a var v is assigned to in a sequence of Lets, without adjusting variables, assuming that this expression has a pure operation. If the expression has an impure operation, or there is no binding corresponding to v (i.e., v comes from Γ_in), return none

                                                                                                                      Equations
                                                                                                                      • One or more equations did not get rendered due to their size.
                                                                                                                      • Lets.nil.getPureExprAux x_2 = none
                                                                                                                      Instances For
                                                                                                                        def Lets.getPureExpr {d : Dialect} [DialectSignature d] {eff : EffectKind} {Γ₁ : Ctxt d.Ty} {Γ₂ : Ctxt d.Ty} (lets : Lets d Γ₁ eff Γ₂) {t : d.Ty} (v : Γ₂.Var t) :

                                                                                                                        Get the Expr that a var v is assigned to in a sequence of Lets. The variables are adjusted so that they are variables in the output context of a lets, not the local context where the variable appears.

                                                                                                                        Equations
                                                                                                                        Instances For
                                                                                                                          @[simp]
                                                                                                                          theorem Lets.getPureExpr_nil {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} :
                                                                                                                          ∀ {t : d.Ty} {v : Γ.Var t}, Lets.nil.getPureExpr v = none
                                                                                                                          @[simp]
                                                                                                                          theorem Lets.getPureExpr_var_last {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {ty : d.Ty} (lets : Lets d Γ_in eff Γ_out) (e : Expr d Γ_out eff ty) :
                                                                                                                          (lets.var e).getPureExpr (Ctxt.Var.last Γ_out ty) = Expr.changeVars Ctxt.Hom.id.snocRight <$> e.toPure?
                                                                                                                          @[simp]
                                                                                                                          theorem Lets.getPureExprAux_var_toSnoc {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {ty₁ : d.Ty} {ty₂ : d.Ty} (lets : Lets d Γ_in eff Γ_out) (e : Expr d Γ_out eff ty₁) (v : Γ_out.Var ty₂) :
                                                                                                                          (lets.var e).getPureExprAux v = lets.getPureExprAux v
                                                                                                                          @[simp]
                                                                                                                          theorem Lets.getPureExpr_var_toSnoc {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {ty₁ : d.Ty} {ty₂ : d.Ty} (lets : Lets d Γ_in eff Γ_out) (e : Expr d Γ_out eff ty₁) (v : Γ_out.Var ty₂) :
                                                                                                                          (lets.var e).getPureExpr v = Expr.changeVars Ctxt.Hom.id.snocRight <$> lets.getPureExpr v
                                                                                                                          theorem Lets.denote_getPureExprAux {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {eff : EffectKind} {α : Type} [LawfulMonad d.m] {Γ₁ : Ctxt d.Ty} {Γ₂ : Ctxt d.Ty} {t : d.Ty} {lets : Lets d Γ₁ eff Γ₂} {v : Γ₂.Var t} {ePure : Expr d (Γ₂.dropUntil v) EffectKind.pure t} (he : lets.getPureExprAux v = some ePure) (s : Γ₁.Valuation) (f : Γ₂.Valuationteff.toMonad d.m α) :
                                                                                                                          (do let Γvlets.denote s f Γv ((Expr.changeVars Ctxt.dropUntilHom ePure).denote Γv)) = do let Γvlets.denote s f Γv (Γv v)
                                                                                                                          theorem Lets.denote_getExpr {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {eff : EffectKind} {α : Type} [LawfulMonad d.m] {Γ₁ : Ctxt d.Ty} {Γ₂ : Ctxt d.Ty} {lets : Lets d Γ₁ eff Γ₂} {t : d.Ty} {v : Γ₂.Var t} {e : Expr d Γ₂ EffectKind.pure t} (he : lets.getPureExpr v = some e) (s : Γ₁.Valuation) (f : Γ₂.Valuationteff.toMonad d.m α) :
                                                                                                                          (do let Γvlets.denote s f Γv (e.denote Γv)) = do let Γvlets.denote s f Γv (Γv v)

                                                                                                                          Mapping #

                                                                                                                          We can map between different dialects

                                                                                                                          def RegionSignature.map {Ty : Type} {Ty' : Type} (f : TyTy') :
                                                                                                                          Equations
                                                                                                                          Instances For
                                                                                                                            Equations
                                                                                                                            def Signature.map {Ty : Type} {Ty' : Type} (f : TyTy') :
                                                                                                                            Signature TySignature Ty'
                                                                                                                            Equations
                                                                                                                            Instances For
                                                                                                                              Equations
                                                                                                                              • One or more equations did not get rendered due to their size.

                                                                                                                              A dialect morphism consists of a map between operations and a map between types, such that the signature of operations is respected

                                                                                                                              • mapOp : d.Opd'.Op
                                                                                                                              • mapTy : d.Tyd'.Ty
                                                                                                                              • preserves_signature : ∀ (op : d.Op), signature (self.mapOp op) = self.mapTy <$> signature op
                                                                                                                              Instances For
                                                                                                                                theorem DialectMorphism.preserves_signature {d : Dialect} {d' : Dialect} [DialectSignature d] [DialectSignature d'] (self : DialectMorphism d d') (op : d.Op) :
                                                                                                                                signature (self.mapOp op) = self.mapTy <$> signature op
                                                                                                                                Equations
                                                                                                                                • =
                                                                                                                                Instances For
                                                                                                                                  Equations
                                                                                                                                  • =
                                                                                                                                  Instances For
                                                                                                                                    Equations
                                                                                                                                    • =
                                                                                                                                    Instances For
                                                                                                                                      @[irreducible]
                                                                                                                                      def Com.changeDialect {d : Dialect} {d' : Dialect} [DialectSignature d] [DialectSignature d'] (f : DialectMorphism d d') {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} :
                                                                                                                                      Com d Γ eff tyCom d' (f.mapTy <$> Γ) eff (f.mapTy ty)
                                                                                                                                      Equations
                                                                                                                                      Instances For
                                                                                                                                        @[irreducible]
                                                                                                                                        def Expr.changeDialect {d : Dialect} {d' : Dialect} [DialectSignature d] [DialectSignature d'] (f : DialectMorphism d d') {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} :
                                                                                                                                        Expr d Γ eff tyExpr d' (Ctxt.map f.mapTy Γ) eff (f.mapTy ty)
                                                                                                                                        Equations
                                                                                                                                        Instances For
                                                                                                                                          @[irreducible]
                                                                                                                                          def HVector.changeDialect {d : Dialect} {d' : Dialect} [DialectSignature d] [DialectSignature d'] (f : DialectMorphism d d') {eff : EffectKind} {regSig : RegionSignature d.Ty} :
                                                                                                                                          HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 eff t.2) regSigHVector (fun (t : Ctxt d'.Ty × d'.Ty) => Com d' t.1 eff t.2) (f.mapTy <$> regSig)

                                                                                                                                          Inline of HVector.map' for the termination checker

                                                                                                                                          Equations
                                                                                                                                          Instances For
                                                                                                                                            def Lets.changeDialect {d : Dialect} {d' : Dialect} [DialectSignature d] [DialectSignature d'] (f : DialectMorphism d d') {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} :
                                                                                                                                            Lets d Γ_in eff Γ_outLets d' (f.mapTy <$> Γ_in) eff (f.mapTy <$> Γ_out)
                                                                                                                                            Equations
                                                                                                                                            Instances For
                                                                                                                                              @[simp]
                                                                                                                                              theorem Com.changeDialect_ret {d : Dialect} {d' : Dialect} [DialectSignature d] [DialectSignature d'] {Γ : Ctxt d.Ty} {t : d.Ty} {eff : EffectKind} (f : DialectMorphism d d') (v : Γ.Var t) :
                                                                                                                                              @[simp]
                                                                                                                                              theorem Com.changeDialect_var {d : Dialect} {d' : Dialect} [DialectSignature d] [DialectSignature d'] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} {u : d.Ty} (f : DialectMorphism d d') (e : Expr d Γ eff t) (body : Com d (Γ.snoc t) eff u) :
                                                                                                                                              @[simp]
                                                                                                                                              theorem HVector.changeDialect_nil {d : Dialect} {d' : Dialect} [DialectSignature d] [DialectSignature d'] {eff : EffectKind} (f : DialectMorphism d d') :
                                                                                                                                              HVector.changeDialect f HVector.nil = HVector.nil

                                                                                                                                              Mapping #

                                                                                                                                              @[reducible, inline]
                                                                                                                                              abbrev Mapping {d : Dialect} (Γ : Ctxt d.Ty) (Δ : Ctxt d.Ty) :

                                                                                                                                              Mapping Γ Δ represents a partial homomorphism from context Γ to Δ. It's used to incrementally build a total homorphism

                                                                                                                                              Equations
                                                                                                                                              • Mapping Γ Δ = AList fun (x : (t : d.Ty) × Γ.Var t) => Δ.Var x.fst
                                                                                                                                              Instances For
                                                                                                                                                theorem AList.mem_of_mem_entries {α : Type u_1} {β : αType u_2} {s : AList β} {k : α} {v : β k} :
                                                                                                                                                k, v s.entriesk s

                                                                                                                                                if (k, v) is in s.entries then k is in s.

                                                                                                                                                For mathlib

                                                                                                                                                theorem AList.mem_entries_of_mem {α : Type u_1} {β : αType u_2} {s : AList β} {k : α} :
                                                                                                                                                k s∃ (v : β k), k, v s.entries

                                                                                                                                                if k is in s, then there is v such that (k, v) is in s.entries.

                                                                                                                                                Free Variables #

                                                                                                                                                def HVector.toVarSet {d : Dialect} [DecidableEq d.Ty] {Γ : Ctxt d.Ty} {l : List d.Ty} (T : HVector Γ.Var l) :
                                                                                                                                                Γ.VarSet

                                                                                                                                                Convert a heterogenous vector of variables into a homogeneous VarSet

                                                                                                                                                Equations
                                                                                                                                                • HVector.nil.toVarSet =
                                                                                                                                                • (v::ₕvs).toVarSet = insert head, v vs.toVarSet
                                                                                                                                                Instances For
                                                                                                                                                  def HVector.vars {d : Dialect} [DecidableEq d.Ty] {Γ : Ctxt d.Ty} {l : List d.Ty} (T : HVector Γ.Var l) :
                                                                                                                                                  Γ.VarSet
                                                                                                                                                  Equations
                                                                                                                                                  Instances For
                                                                                                                                                    def Lets.vars {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {t : d.Ty} :
                                                                                                                                                    Lets d Γ_in eff Γ_outΓ_out.Var tΓ_in.VarSet

                                                                                                                                                    The free variables of lets that are (transitively) referred to by some variable v. Also known as the uses of var.

                                                                                                                                                    Equations
                                                                                                                                                    • One or more equations did not get rendered due to their size.
                                                                                                                                                    • Lets.nil.vars v = Ctxt.VarSet.ofVar v
                                                                                                                                                    Instances For
                                                                                                                                                      def Com.vars {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] {Γ : Ctxt d.Ty} {t : d.Ty} :
                                                                                                                                                      Com d Γ EffectKind.pure tΓ.VarSet

                                                                                                                                                      com.vars is the set of free variables from Γ that are (transitively) used by the return variable of com

                                                                                                                                                      Equations
                                                                                                                                                      • com.vars = com.toFlatCom.lets.vars com.toFlatCom.ret
                                                                                                                                                      Instances For
                                                                                                                                                        theorem Lets.vars_var_eq {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {lets : Lets d Γ_in eff Γ_out} {t : d.Ty} {e : Expr d Γ_out eff t} {w : } {tw : d.Ty} {wh : Γ_out.get? w = some tw} :
                                                                                                                                                        (lets.var e).vars w + 1, = lets.vars w, wh
                                                                                                                                                        @[simp]
                                                                                                                                                        theorem HVector.vars_nil {d : Dialect} [DecidableEq d.Ty] {Γ : Ctxt d.Ty} :
                                                                                                                                                        HVector.nil.vars =
                                                                                                                                                        @[simp]
                                                                                                                                                        theorem HVector.vars_cons {d : Dialect} [DecidableEq d.Ty] {Γ : Ctxt d.Ty} {t : d.Ty} {l : List d.Ty} (v : Γ.Var t) (T : HVector Γ.Var l) :
                                                                                                                                                        (v::ₕT).vars = insert t, v T.vars
                                                                                                                                                        theorem HVector.map_eq_of_eq_on_vars {d : Dialect} [DecidableEq d.Ty] {Γ : Ctxt d.Ty} {l : List d.Ty} {A : d.TyType u_1} {T : HVector Γ.Var l} {s₁ : (t : d.Ty) → Γ.Var tA t} {s₂ : (t : d.Ty) → Γ.Var tA t} (h : vT.vars, s₁ v.fst v.snd = s₂ v.fst v.snd) :
                                                                                                                                                        HVector.map s₁ T = HVector.map s₂ T

                                                                                                                                                        For a vector of variables T, let s₁ and s₂ be two maps from variables to A t. If s₁ and s₂ agree on all variables in T (which is a VarSet), then T.map s₁ = T.map s₂

                                                                                                                                                        Expression Trees #

                                                                                                                                                        Morally, a pure Com can be represented as just a tree of expressions. We use this intuition to explain what matchVar does, but first we give a semi-formal definition of ExprTree and its operations.

                                                                                                                                                        inductive ExprTree (d : Dialect) [DialectSignature d] (Γ : Ctxt d.Ty) (ty : d.Ty) :

                                                                                                                                                        A tree of pure expressions

                                                                                                                                                        Instances For
                                                                                                                                                          inductive ExprTreeBranches (d : Dialect) [DialectSignature d] (Γ : Ctxt d.Ty) :
                                                                                                                                                          List d.TyType
                                                                                                                                                          Instances For
                                                                                                                                                            def ExprTreeBranches.ofHVector {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {ts : List d.Ty} :
                                                                                                                                                            HVector (ExprTree d Γ) tsExprTreeBranches d Γ ts
                                                                                                                                                            Equations
                                                                                                                                                            Instances For
                                                                                                                                                              @[irreducible]
                                                                                                                                                              def Lets.exprTreeAt {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} {ty : d.Ty} (lets : Lets d Γ_in EffectKind.pure Γ_out) (v : Γ_out.Var ty) :
                                                                                                                                                              ExprTree d Γ_in ty

                                                                                                                                                              lets.exprTreeAt v follows the def-use chain of v in lets to produce an ExprTree whose free variables are only the free variables of lets as a whole

                                                                                                                                                              Equations
                                                                                                                                                              • Lets.nil.exprTreeAt v = ExprTree.fvar v
                                                                                                                                                              • (body.var e).exprTreeAt 0, = Expr.toExprTree body e
                                                                                                                                                              • (body.var e).exprTreeAt v.succ, h = body.exprTreeAt v, h
                                                                                                                                                              Instances For
                                                                                                                                                                @[irreducible]
                                                                                                                                                                def Expr.toExprTree {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} {ty : d.Ty} (lets : Lets d Γ_in EffectKind.pure Γ_out) (e : Expr d Γ_out EffectKind.pure ty) :
                                                                                                                                                                ExprTree d Γ_in ty

                                                                                                                                                                e.toExprTree lets converts a single expression e into an expression tree by looking up the arguments to e in lets

                                                                                                                                                                Equations
                                                                                                                                                                Instances For
                                                                                                                                                                  @[irreducible]
                                                                                                                                                                  def Expr.toExprTree.argsToBranches {d : Dialect} [DialectSignature d] {Γ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} (lets : Lets d Γ_in EffectKind.pure Γ_out) {ts : List d.Ty} :
                                                                                                                                                                  HVector Γ_out.Var tsExprTreeBranches d Γ_in ts
                                                                                                                                                                  Equations
                                                                                                                                                                  Instances For

                                                                                                                                                                    TermModel #

                                                                                                                                                                    We can syntactically give semantics to any dialect by denoting it with ExprTrees

                                                                                                                                                                    structure TermModelTy (Ty : Type) :

                                                                                                                                                                    A wrapper around the Ty universe of a term model, to prevent the instance of TyDenote leaking to the original type.

                                                                                                                                                                    • ty : Ty
                                                                                                                                                                    Instances For
                                                                                                                                                                      def TermModel (d : Dialect) (_Γ : Ctxt d.Ty) :

                                                                                                                                                                      The Term Model of a dialect d is a dialect with the exact same operations, types, and signature as the original dialect d, but whose denotation exists of expression trees.

                                                                                                                                                                      Equations
                                                                                                                                                                      Instances For
                                                                                                                                                                        Instances
                                                                                                                                                                          instance instMonadMTermModel {d : Dialect} {Γ : Ctxt d.Ty} [Monad d.m] :
                                                                                                                                                                          Monad (TermModel d Γ).m
                                                                                                                                                                          Equations
                                                                                                                                                                          Equations
                                                                                                                                                                          • instDialectSignatureTermModel = { signature := fun (op : (TermModel d Γ).Op) => TermModelTy.mk <$> signature op }
                                                                                                                                                                          instance instTyDenoteTyTermModel {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} :
                                                                                                                                                                          Equations
                                                                                                                                                                          • instTyDenoteTyTermModel = { toType := fun (ty : (TermModel d Γ).Ty) => ExprTree d Γ ty.ty }
                                                                                                                                                                          Equations
                                                                                                                                                                          • One or more equations did not get rendered due to their size.
                                                                                                                                                                          def Ctxt.Substitution (d : Dialect) [DialectSignature d] (Γ : Ctxt d.Ty) (Δ : Ctxt d.Ty) :

                                                                                                                                                                          A substitution in context Γ maps variables of Γ to expression trees in Δ, in a type-preserving manner

                                                                                                                                                                          Equations
                                                                                                                                                                          Instances For
                                                                                                                                                                            def Ctxt.Substitution.ofValuation {d : Dialect} [DialectSignature d] {Δ : Ctxt d.Ty} {Γ : Ctxt d.Ty} (V : (TermModelTy.mk <$> Γ).Valuation) :

                                                                                                                                                                            A valuation of the term model w.r.t context Δ is exactly a substitution

                                                                                                                                                                            Equations
                                                                                                                                                                            • V v, h = V v,
                                                                                                                                                                            Instances For
                                                                                                                                                                              def Ctxt.Substitution.ofHom {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {Δ : Ctxt d.Ty} (f : Γ.Hom Δ) :

                                                                                                                                                                              A context homomorphism trivially induces a substitution

                                                                                                                                                                              Equations
                                                                                                                                                                              Instances For
                                                                                                                                                                                Equations
                                                                                                                                                                                • TermModel.morphism = { mapOp := id, mapTy := TermModelTy.mk, preserves_signature := }
                                                                                                                                                                                Instances For
                                                                                                                                                                                  def Lets.toSubstitution {d : Dialect} [DialectSignature d] [Monad d.m] [PureDialect d] {Γ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} (lets : Lets d Γ_in EffectKind.pure Γ_out) :
                                                                                                                                                                                  Ctxt.Substitution d Γ_out Γ_in

                                                                                                                                                                                  lets.toSubstitution gives a substitution from each variable in the output context to an expression tree with variables in the input context by following the def-use chain

                                                                                                                                                                                  Equations
                                                                                                                                                                                  • One or more equations did not get rendered due to their size.
                                                                                                                                                                                  Instances For
                                                                                                                                                                                    def ExprTree.applySubstitution {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {ty : d.Ty} {Δ : Ctxt d.Ty} (σ : Ctxt.Substitution d Γ Δ) :
                                                                                                                                                                                    ExprTree d Γ tyExprTree d Δ ty

                                                                                                                                                                                    e.applySubstitution σ replaces occurences of v in e with σ v

                                                                                                                                                                                    Equations
                                                                                                                                                                                    Instances For
                                                                                                                                                                                      def ExprTreeBranches.applySubstitution {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {ty : List d.Ty} {Δ : Ctxt d.Ty} (σ : Ctxt.Substitution d Γ Δ) :

                                                                                                                                                                                      es.applySubstitution σ maps ExprTree.applySubstution over es

                                                                                                                                                                                      Equations
                                                                                                                                                                                      Instances For

                                                                                                                                                                                        Matching #

                                                                                                                                                                                        @[irreducible]
                                                                                                                                                                                        def matchArg {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {Δ_in : Ctxt d.Ty} {Δ_out : Ctxt d.Ty} [DecidableEq d.Op] (lets : Lets d Γ_in eff Γ_out) (matchLets : Lets d Δ_in EffectKind.pure Δ_out) {l : List d.Ty} :
                                                                                                                                                                                        HVector Γ_out.Var lHVector Δ_out.Var lMapping Δ_in Γ_outOption (Mapping Δ_in Γ_out)

                                                                                                                                                                                        matchArg lets matchLets args matchArgs map tries to extends the partial substition map by calling matchVar lets args[i] matchLets matchArgs[i] for each pair of corresponding variables, returning the final partial substiution, or none on conflicting assigments

                                                                                                                                                                                        Equations
                                                                                                                                                                                        Instances For
                                                                                                                                                                                          @[irreducible]
                                                                                                                                                                                          def matchVar {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] {eff : EffectKind} {Γ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} {Δ_in : Ctxt d.Ty} {Δ_out : Ctxt d.Ty} {t : d.Ty} [DecidableEq d.Op] (lets : Lets d Γ_in eff Γ_out) (v : Γ_out.Var t) (matchLets : Lets d Δ_in EffectKind.pure Δ_out) (w : Δ_out.Var t) (ma : optParam (Mapping Δ_in Γ_out) ) :
                                                                                                                                                                                          Option (Mapping Δ_in Γ_out)

                                                                                                                                                                                          matchVar lets v matchLets w map tries to extend the partial substition map, such that the transitive expression trees represented by variables v and w become syntactically equal, returning the final partial substitution map' on success , or none on conflicting assignments.

                                                                                                                                                                                          Diagramatically, the contexts are related as follows: Γ_in --[lets]--> Γ_out <--[map]-- Δ_in --[matchLets]--> Δ_out [v] [w]

                                                                                                                                                                                          Informally, we want to find a map that glues the program matchLets to the end of lets such that the expression tree of v (in lets) is syntactically unified with the expression tree of w (in matchLets).

                                                                                                                                                                                          This obeys the hypothetical equation: (matchLets.exprTreeAt w).changeVars map = lets.exprTreeAt v where exprTreeAt is a hypothetical definition that gives the expression tree.

                                                                                                                                                                                          NOTE: this only matches on pure let bindings in both matchLets and lets.

                                                                                                                                                                                          Equations
                                                                                                                                                                                          • One or more equations did not get rendered due to their size.
                                                                                                                                                                                          • matchVar lets v (matchLets.var e) w.succ, h x = matchVar lets v matchLets w, x
                                                                                                                                                                                          • matchVar lets v Lets.nil w x = match AList.lookup t, w x with | some v₂ => if v = v₂ then some x else none | none => some (AList.insert t, w v x)
                                                                                                                                                                                          Instances For
                                                                                                                                                                                            theorem matchVar_var_succ_eq {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] {eff : EffectKind} {Γ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} {Δ_in : Ctxt d.Ty} {Δ_out : Ctxt d.Ty} {t : d.Ty} {te : d.Ty} [DecidableEq d.Op] (lets : Lets d Γ_in eff Γ_out) (v : Γ_out.Var t) (matchLets : Lets d Δ_in EffectKind.pure Δ_out) (matchE : Expr d Δ_out EffectKind.pure te) (w : ) (hw : Δ_out.get? w = some t) (ma : Mapping Δ_in Γ_out) :
                                                                                                                                                                                            matchVar lets v (matchLets.var matchE) w + 1, ma = matchVar lets v matchLets w, hw ma

                                                                                                                                                                                            how matchVar behaves on var at a successor variable

                                                                                                                                                                                            theorem matchVar_var_last_eq {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] {eff : EffectKind} {Γ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} {Δ_in : Ctxt d.Ty} {Δ_out : Ctxt d.Ty} {t : d.Ty} [DecidableEq d.Op] (lets : Lets d Γ_in eff Γ_out) (v : Γ_out.Var t) (matchLets : Lets d Δ_in EffectKind.pure Δ_out) (matchE : Expr d Δ_out EffectKind.pure t) (ma : Mapping Δ_in Γ_out) :
                                                                                                                                                                                            matchVar lets v (matchLets.var matchE) (Ctxt.Var.last Δ_out t) ma = do let ielets.getPureExpr v if hs : ∃ (h : ie.op = matchE.op), ie.regArgs = matchE.regArgs then matchArg lets matchLets ie.args (matchE.args) ma else none

                                                                                                                                                                                            how matchVar behaves on var at the last variable.

                                                                                                                                                                                            theorem subset_entries {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] :
                                                                                                                                                                                            (∀ (Γ_in : Ctxt d.Ty) (eff : EffectKind) (Γ_out Δ_in Δ_out : Ctxt d.Ty) (inst : DecidableEq d.Op) (lets : Lets d Γ_in eff Γ_out) (matchLets : Lets d Δ_in EffectKind.pure Δ_out) (l : List d.Ty) (argsl : HVector Γ_out.Var l) (argsr : HVector Δ_out.Var l) (ma varMap : Mapping Δ_in Γ_out), varMap matchArg lets matchLets argsl argsr mama.entries varMap.entries) ∀ (eff : EffectKind) (Γ_in Γ_out Δ_in Δ_out : Ctxt d.Ty) (t : d.Ty) (inst : DecidableEq d.Op) (lets : Lets d Γ_in eff Γ_out) (v : Γ_out.Var t) (matchLets : Lets d Δ_in EffectKind.pure Δ_out) (w : Δ_out.Var t) (ma varMap : Mapping Δ_in Γ_out), varMap matchVar lets v matchLets w mama.entries varMap.entries
                                                                                                                                                                                            theorem subset_entries_matchArg {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] {Γ_in : Ctxt d.Ty} {eff : EffectKind} [DecidableEq d.Op] {Γ_out : Ctxt d.Ty} {Δ_in : Ctxt d.Ty} {Δ_out : Ctxt d.Ty} {lets : Lets d Γ_in eff Γ_out} {matchLets : Lets d Δ_in EffectKind.pure Δ_out} {l : List d.Ty} {argsl : HVector Γ_out.Var l} {argsr : HVector Δ_out.Var l} {ma : Mapping Δ_in Γ_out} {varMap : Mapping Δ_in Γ_out} (hvarMap : varMap matchArg lets matchLets argsl argsr ma) :
                                                                                                                                                                                            ma.entries varMap.entries
                                                                                                                                                                                            theorem subset_entries_matchVar {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] {Δ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} {Γ_in : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} {Δ_out : Ctxt d.Ty} [DecidableEq d.Op] {varMap : Mapping Δ_in Γ_out} {ma : Mapping Δ_in Γ_out} {lets : Lets d Γ_in eff Γ_out} {v : Γ_out.Var t} {matchLets : Lets d Δ_in EffectKind.pure Δ_out} {w : Δ_out.Var t} (hvarMap : varMap matchVar lets v matchLets w ma) :
                                                                                                                                                                                            ma.entries varMap.entries

                                                                                                                                                                                            matchVar only adds new entries: if matchVar lets v matchLets w ma = .some varMap, then ma is a subset of varMap. Said differently, The output mapping of matchVar extends the input mapping when it succeeds.

                                                                                                                                                                                            theorem denote_matchVar_matchArg {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DecidableEq d.Ty] [DecidableEq d.Op] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {Δ_in : Ctxt d.Ty} {Δ_out : Ctxt d.Ty} {lets : Lets d Γ_in eff Γ_out} {matchLets : Lets d Δ_in EffectKind.pure Δ_out} {l : List d.Ty} {args₁ : HVector Γ_out.Var l} {args₂ : HVector Δ_out.Var l} {ma : Mapping Δ_in Γ_out} {varMap₁ : Mapping Δ_in Γ_out} {varMap₂ : Mapping Δ_in Γ_out} (h_sub : varMap₁.entries varMap₂.entries) (f₁ : (t : d.Ty) → Γ_out.Var tt) (f₂ : (t : d.Ty) → Δ_out.Var tt) (hf : ∀ (t : d.Ty) (v₁ : Γ_out.Var t) (v₂ : Δ_out.Var t) (ma ma' : Mapping Δ_in Γ_out), ma matchVar lets v₁ matchLets v₂ ma'ma.entries varMap₂.entriesf₂ t v₂ = f₁ t v₁) (hmatchVar : ∀ (vMap : Mapping Δ_in Γ_out) (t : d.Ty) (vₗ : Γ_out.Var t) (vᵣ : Δ_out.Var t) (ma : Mapping Δ_in Γ_out), vMap matchVar lets vₗ matchLets vᵣ mama.entries vMap.entries) (hvarMap : varMap₁ matchArg lets matchLets args₁ args₂ ma) :
                                                                                                                                                                                            HVector.map f₂ args₂ = HVector.map f₁ args₁
                                                                                                                                                                                            @[reducible, inline]
                                                                                                                                                                                            abbrev Expr.IsDenotationForPureE {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} (e : Expr d Γ eff ty) (Γv : Γ.Valuation) (x : ty) :

                                                                                                                                                                                            e.IsDenotationForPureE Γv x holds if x is the pure value obtained from e under valuation Γv, assuming that e has a pure operation. If e has an impure operation, the property holds vacuously.

                                                                                                                                                                                            Equations
                                                                                                                                                                                            Instances For
                                                                                                                                                                                              def Expr.denoteIntoSubtype {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} (e : Expr d Γ_in eff ty) (Γv : Γ_in.Valuation) :
                                                                                                                                                                                              eff.toMonad d.m { x : ty // e.IsDenotationForPureE Γv x }
                                                                                                                                                                                              Equations
                                                                                                                                                                                              • e.denoteIntoSubtype Γv = match h_pure : e.toPure? with | some ePure => pure ePure.denote Γv, | none => (fun (x : ty) => x, ) <$> e.denote Γv
                                                                                                                                                                                              Instances For
                                                                                                                                                                                                def Lets.denoteIntoSubtype {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} (lets : Lets d Γ_in eff Γ_out) (Γv : Γ_in.Valuation) :
                                                                                                                                                                                                eff.toMonad d.m { V : Γ_out.Valuation // ∀ {t : d.Ty} (v : Γ_out.Var t) (e : Expr d Γ_out EffectKind.pure t), lets.getPureExpr v = some ee.denote V = V v }

                                                                                                                                                                                                An alternative version of Lets.denote, whose returned type carries a proof that the valuation agrees with the denotation of every pure expression in lets.

                                                                                                                                                                                                Strongly prefer using Lets.denote in definitions, but you can use denoteIntoSubtype in proofs. The subtype allows us to carry the property with us when doing congruence proofs inside a bind.

                                                                                                                                                                                                Equations
                                                                                                                                                                                                • Lets.nil.denoteIntoSubtype Γv = pure Γv,
                                                                                                                                                                                                • (body.var e).denoteIntoSubtype Γv = do let __discrbody.denoteIntoSubtype Γv match __discr with | Vout, h => do let ve.denoteIntoSubtype Vout pure Vout::ᵥv,
                                                                                                                                                                                                Instances For
                                                                                                                                                                                                  theorem Expr.denote_eq_denoteIntoSubtype {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] [LawfulMonad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} (e : Expr d Γ eff ty) (Γv : Γ.Valuation) :
                                                                                                                                                                                                  e.denote Γv = Subtype.val <$> e.denoteIntoSubtype Γv
                                                                                                                                                                                                  theorem Lets.denote_eq_denoteIntoSubtype {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] [LawfulMonad d.m] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} (lets : Lets d Γ_in eff Γ_out) (Γv : Γ_in.Valuation) :
                                                                                                                                                                                                  lets.denote Γv = Subtype.val <$> lets.denoteIntoSubtype Γv
                                                                                                                                                                                                  theorem matchVar_nil {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] [DecidableEq d.Op] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} :
                                                                                                                                                                                                  ∀ {t : d.Ty} {v : Γ_out.Var t} {Δ : Ctxt d.Ty} {w : Δ.Var t} {ma ma' : Mapping Δ Γ_out} {lets : Lets d Γ_in eff Γ_out}, matchVar lets v Lets.nil w ma = some ma'AList.lookup t, w ma' = some v
                                                                                                                                                                                                  theorem matchVar_var_last {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] [DecidableEq d.Op] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {Δ_in : Ctxt d.Ty} {Δ_out : Ctxt d.Ty} {ty : d.Ty} {v : Γ_out.Var ty} {ma : Mapping Δ_in Γ_out} {ma' : Mapping Δ_in Γ_out} {lets : Lets d Γ_in eff Γ_out} {matchLets : Lets d Δ_in EffectKind.pure Δ_out} {matchExpr : Expr d Δ_out EffectKind.pure ty} :
                                                                                                                                                                                                  matchVar lets v (matchLets.var matchExpr) (Ctxt.Var.last Δ_out ty) ma = some ma'∃ (args : HVector Γ_out.Var (DialectSignature.sig matchExpr.op)), lets.getPureExpr v = some (Expr.mk matchExpr.op args matchExpr.regArgs) matchArg lets matchLets args matchExpr.args ma = some ma'
                                                                                                                                                                                                  @[simp]
                                                                                                                                                                                                  theorem Lets.denote_var_last_pure {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} {ty : d.Ty} (lets : Lets d Γ_in EffectKind.pure Γ_out) (e : Expr d Γ_out EffectKind.pure ty) (V_in : Γ_in.Valuation) :
                                                                                                                                                                                                  (lets.var e).denote V_in (Ctxt.Var.last Γ_out ty) = e.denote (lets.denote V_in)
                                                                                                                                                                                                  @[simp]
                                                                                                                                                                                                  theorem Expr.denote_eq_denote_of {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {eff : EffectKind} {ty : d.Ty} {Δ : Ctxt d.Ty} {e₁ : Expr d Γ eff ty} {e₂ : Expr d Δ eff ty} {Γv : Γ.Valuation} {Δv : Δ.Valuation} (op_eq : e₁.op = e₂.op) (h_regArgs : HEq e₁.regArgs e₂.regArgs) (h_args : HVector.map (fun (x : d.Ty) (v : Γ.Var x) => Γv v) (op_eqe₁.args) = HVector.map (fun (x : d.Ty) (v : Δ.Var x) => Δv v) e₂.args) :
                                                                                                                                                                                                  e₁.denote Γv = e₂.denote Δv
                                                                                                                                                                                                  theorem denote_matchVar2_of_subset {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [DecidableEq d.Ty] [Monad d.m] [(t : d.Ty) → Inhabited t] [DecidableEq d.Op] [LawfulMonad d.m] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {t : d.Ty} {Δ_in : Ctxt d.Ty} {Δ_out : Ctxt d.Ty} {α : Type} {lets : Lets d Γ_in eff Γ_out} {v : Γ_out.Var t} {varMap₁ : Mapping Δ_in Γ_out} {varMap₂ : Mapping Δ_in Γ_out} {s₁ : Γ_in.Valuation} {ma : Mapping Δ_in Γ_out} {matchLets : Lets d Δ_in EffectKind.pure Δ_out} {w : Δ_out.Var t} (h_sub : varMap₁.entries varMap₂.entries) (h_matchVar : varMap₁ matchVar lets v matchLets w ma) (f : Γ_out.Valuationteff.toMonad d.m α) :
                                                                                                                                                                                                  (do let Γ_out_letslets.denote s₁ f Γ_out_lets (matchLets.denote (fun (t' : d.Ty) (v' : Δ_in.Var t') => match AList.lookup t', v' varMap₂ with | some mappedVar => Γ_out_lets mappedVar | none => default) w)) = do let Γ_out_letslets.denote s₁ f Γ_out_lets (Γ_out_lets v)
                                                                                                                                                                                                  theorem denote_matchVar2 {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [DecidableEq d.Ty] [Monad d.m] [(t : d.Ty) → Inhabited t] [DecidableEq d.Op] [LawfulMonad d.m] {Γ_in : Ctxt d.Ty} {eff : EffectKind} {Γ_out : Ctxt d.Ty} {t : d.Ty} {Δ_in : Ctxt d.Ty} {Δ_out : Ctxt d.Ty} {α : Type} {lets : Lets d Γ_in eff Γ_out} {v : Γ_out.Var t} {varMap : Mapping Δ_in Γ_out} {s₁ : Γ_in.Valuation} {ma : Mapping Δ_in Γ_out} {matchLets : Lets d Δ_in EffectKind.pure Δ_out} {w : Δ_out.Var t} {f : Γ_out.Valuationteff.toMonad d.m α} :
                                                                                                                                                                                                  varMap matchVar lets v matchLets w ma(do let Γvletslets.denote s₁ f Γvlets (matchLets.denote (fun (t' : d.Ty) (v' : Δ_in.Var t') => match AList.lookup t', v' varMap with | some mappedVar => Γvlets mappedVar | none => default) w)) = do let Γvlets.denote s₁ f Γv (Γv v)

                                                                                                                                                                                                  if matchVar lets v matchLets w ma = .some varMap, then informally:

                                                                                                                                                                                                  Γ_in --⟦lets⟧--> Γ_out --comap ma--> Δ_in --⟦matchLets⟧ --> Δ_out --w--> t = Γ_in ⟦lets⟧ --> Γ_out --v--> t

                                                                                                                                                                                                  @[simp]
                                                                                                                                                                                                  theorem lt_one_add_add (a : ) (b : ) :
                                                                                                                                                                                                  b < 1 + a + b
                                                                                                                                                                                                  @[simp]
                                                                                                                                                                                                  theorem zero_eq_zero :
                                                                                                                                                                                                  Zero.zero = 0
                                                                                                                                                                                                  @[irreducible]
                                                                                                                                                                                                  theorem mem_matchVar_matchArg {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] [DecidableEq d.Op] {eff : EffectKind} {Γ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} {Δ_in : Ctxt d.Ty} {Δ_out : Ctxt d.Ty} {lets : Lets d Γ_in eff Γ_out} {matchLets : Lets d Δ_in EffectKind.pure Δ_out} {l : List d.Ty} {argsₗ : HVector Γ_out.Var l} {argsᵣ : HVector Δ_out.Var l} {ma : Mapping Δ_in Γ_out} {varMap : Mapping Δ_in Γ_out} (hvarMap : varMap matchArg lets matchLets argsₗ argsᵣ ma) {t' : d.Ty} {v' : Δ_in.Var t'} :
                                                                                                                                                                                                  (t', v' Finset.biUnion argsᵣ.vars fun (v : (t : d.Ty) × Δ_out.Var t) => matchLets.vars v.snd)t', v' varMap
                                                                                                                                                                                                  @[irreducible]
                                                                                                                                                                                                  theorem mem_matchVar {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] [DecidableEq d.Op] {Δ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} {Γ_in : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} {Δ_out : Ctxt d.Ty} {varMap : Mapping Δ_in Γ_out} {ma : Mapping Δ_in Γ_out} {lets : Lets d Γ_in eff Γ_out} {v : Γ_out.Var t} {matchLets : Lets d Δ_in EffectKind.pure Δ_out} {w : Δ_out.Var t} (hvarMap : varMap matchVar lets v matchLets w ma) {t' : d.Ty} {v' : Δ_in.Var t'} (hMatchLets : t', v' matchLets.vars w) :
                                                                                                                                                                                                  t', v' varMap

                                                                                                                                                                                                  All variables containing in matchExpr are assigned by matchVar.

                                                                                                                                                                                                  def matchVarMap {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] [DecidableEq d.Op] {eff : EffectKind} {Γ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} {Δ_in : Ctxt d.Ty} {Δ_out : Ctxt d.Ty} {t : d.Ty} (lets : Lets d Γ_in eff Γ_out) (v : Γ_out.Var t) (matchLets : Lets d Δ_in EffectKind.pure Δ_out) (w : Δ_out.Var t) (hvars : ∀ (t_1 : d.Ty) (v : Δ_in.Var t_1), t_1, v matchLets.vars w) :
                                                                                                                                                                                                  Option (Δ_in.Hom Γ_out)

                                                                                                                                                                                                  A version of matchVar that returns a Hom of Ctxts instead of the AList, provided every variable in the context appears as a free variable in matchExpr.

                                                                                                                                                                                                  Equations
                                                                                                                                                                                                  • One or more equations did not get rendered due to their size.
                                                                                                                                                                                                  Instances For
                                                                                                                                                                                                    theorem denote_matchVarMap2 {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [DecidableEq d.Ty] [Monad d.m] [(t : d.Ty) → Inhabited t] [DecidableEq d.Op] {eff : EffectKind} {α : Type} [LawfulMonad d.m] {Γ_in : Ctxt d.Ty} {Γ_out : Ctxt d.Ty} {Δ_in : Ctxt d.Ty} {Δ_out : Ctxt d.Ty} {lets : Lets d Γ_in eff Γ_out} {t : d.Ty} {v : Γ_out.Var t} {matchLets : Lets d Δ_in EffectKind.pure Δ_out} {w : Δ_out.Var t} {hvars : ∀ (t_1 : d.Ty) (v : Δ_in.Var t_1), t_1, v matchLets.vars w} {map : Δ_in.Hom Γ_out} (hmap : map matchVarMap lets v matchLets w hvars) (s₁ : Γ_in.Valuation) (f : Γ_out.Valuationteff.toMonad d.m α) :
                                                                                                                                                                                                    (do let Γ_out_vlets.denote s₁ f Γ_out_v (matchLets.denote (Γ_out_v.comap map) w)) = do let Γ_out_vlets.denote s₁ f Γ_out_v (Γ_out_v v)

                                                                                                                                                                                                    if matchVarMap lets v matchLets w hvars = .some map, then ⟦lets; matchLets⟧ = ⟦lets⟧(v)

                                                                                                                                                                                                    def splitProgramAtAux {d : Dialect} [DialectSignature d] {Γ₁ : Ctxt d.Ty} {eff : EffectKind} {Γ₂ : Ctxt d.Ty} {t : d.Ty} (pos : ) (lets : Lets d Γ₁ eff Γ₂) (prog : Com d Γ₂ eff t) :
                                                                                                                                                                                                    Option ((Γ₃ : Ctxt d.Ty) × Lets d Γ₁ eff Γ₃ × Com d Γ₃ eff t × (t' : d.Ty) × Γ₃.Var t')

                                                                                                                                                                                                    splitProgramAtAux pos lets prog, will return a Lets ending with the posth variable in prog, and an Com starting with the next variable. It also returns, the type of this variable and the variable itself as an element of the output Ctxt of the returned Lets.

                                                                                                                                                                                                    Equations
                                                                                                                                                                                                    Instances For
                                                                                                                                                                                                      theorem denote_splitProgramAtAux {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ₁ : Ctxt d.Ty} {eff : EffectKind} {Γ₂ : Ctxt d.Ty} {t : d.Ty} [LawfulMonad d.m] {pos : } {lets : Lets d Γ₁ eff Γ₂} {prog : Com d Γ₂ eff t} {res : (Γ₃ : Ctxt d.Ty) × Lets d Γ₁ eff Γ₃ × Com d Γ₃ eff t × (t' : d.Ty) × Γ₃.Var t'} (hres : res splitProgramAtAux pos lets prog) (s : Γ₁.Valuation) :
                                                                                                                                                                                                      res.snd.1.denote s >>= res.snd.2.1.denote = lets.denote s >>= prog.denote
                                                                                                                                                                                                      def splitProgramAt {d : Dialect} [DialectSignature d] {Γ₁ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} (pos : ) (prog : Com d Γ₁ eff t) :
                                                                                                                                                                                                      Option ((Γ₂ : Ctxt d.Ty) × Lets d Γ₁ eff Γ₂ × Com d Γ₂ eff t × (t' : d.Ty) × Γ₂.Var t')

                                                                                                                                                                                                      splitProgramAt pos prog, will return a Lets ending with the posth variable in prog, and an Com starting with the next variable. It also returns, the type of this variable and the variable itself as an element of the output Ctxt of the returned Lets.

                                                                                                                                                                                                      Equations
                                                                                                                                                                                                      Instances For
                                                                                                                                                                                                        theorem denote_splitProgramAt {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ₁ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} [LawfulMonad d.m] {pos : } {prog : Com d Γ₁ eff t} {res : (Γ₂ : Ctxt d.Ty) × Lets d Γ₁ eff Γ₂ × Com d Γ₂ eff t × (t' : d.Ty) × Γ₂.Var t'} (hres : res splitProgramAt pos prog) (s : Γ₁.Valuation) :
                                                                                                                                                                                                        res.snd.1.denote s >>= res.snd.2.1.denote = prog.denote s
                                                                                                                                                                                                        def rewriteAt {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] [DecidableEq d.Op] {Γ₁ : Ctxt d.Ty} {t₁ : d.Ty} {Γ₂ : Ctxt d.Ty} {eff : EffectKind} {t₂ : d.Ty} (lhs : Com d Γ₁ EffectKind.pure t₁) (rhs : Com d Γ₁ EffectKind.pure t₁) (hlhs : ∀ (t : d.Ty) (v : Γ₁.Var t), t, v lhs.vars) (pos : ) (target : Com d Γ₂ eff t₂) :
                                                                                                                                                                                                        Option (Com d Γ₂ eff t₂)

                                                                                                                                                                                                        rewriteAt lhs rhs hlhs pos target, searches for lhs at position pos of target. If it can match the variables, it inserts rhs into the program with the correct assignment of variables, and then replaces occurences of the variable at position pos in target with the output of rhs.

                                                                                                                                                                                                        Equations
                                                                                                                                                                                                        • One or more equations did not get rendered due to their size.
                                                                                                                                                                                                        Instances For
                                                                                                                                                                                                          @[simp]
                                                                                                                                                                                                          theorem Com.denote_toFlatCom_lets {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : Ctxt d.Ty} {t : d.Ty} [LawfulMonad d.m] (com : Com d Γ EffectKind.pure t) :
                                                                                                                                                                                                          com.toFlatCom.lets.denote = com.denoteLets
                                                                                                                                                                                                          @[simp]
                                                                                                                                                                                                          theorem Com.toFlatCom_ret {d : Dialect} [DialectSignature d] [Monad d.m] {Γ : Ctxt d.Ty} {t : d.Ty} [LawfulMonad d.m] (com : Com d Γ EffectKind.pure t) :
                                                                                                                                                                                                          com.toFlatCom.ret = com.returnVar
                                                                                                                                                                                                          theorem denote_rewriteAt {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [DecidableEq d.Ty] [Monad d.m] [(t : d.Ty) → Inhabited t] [DecidableEq d.Op] {Γ₁ : Ctxt d.Ty} {t₁ : d.Ty} {Γ₂ : Ctxt d.Ty} {eff : EffectKind} {t₂ : d.Ty} [LawfulMonad d.m] (lhs : Com d Γ₁ EffectKind.pure t₁) (rhs : Com d Γ₁ EffectKind.pure t₁) (hlhs : ∀ (t : d.Ty) (v : Γ₁.Var t), t, v lhs.vars) (pos : ) (target : Com d Γ₂ eff t₂) (hl : lhs.denote = rhs.denote) (rew : Com d Γ₂ eff t₂) (hrew : rew rewriteAt lhs rhs hlhs pos target) :
                                                                                                                                                                                                          rew.denote = target.denote
                                                                                                                                                                                                          structure PeepholeRewrite (d : Dialect) [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] (Γ : List d.Ty) (t : d.Ty) :

                                                                                                                                                                                                          Rewrites are indexed with a concrete list of types, rather than an (erased) context, so that the required variable checks become decidable

                                                                                                                                                                                                          Instances For
                                                                                                                                                                                                            theorem PeepholeRewrite.correct {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {Γ : List d.Ty} {t : d.Ty} (self : PeepholeRewrite d Γ t) :
                                                                                                                                                                                                            self.lhs.denote = self.rhs.denote
                                                                                                                                                                                                            instance instDecidableForallForallMemSigmaTyVarOfListVarSetVars {d : Dialect} [DialectSignature d] [DecidableEq d.Ty] {Γ : List d.Ty} {t' : d.Ty} {lhs : Com d (↑Γ) EffectKind.pure t'} :
                                                                                                                                                                                                            Decidable (∀ (t : d.Ty) (v : (↑Γ).Var t), t, v lhs.vars)
                                                                                                                                                                                                            Equations
                                                                                                                                                                                                            • instDecidableForallForallMemSigmaTyVarOfListVarSetVars = decidable_of_iff (∀ (i : Fin Γ.length), let v := i, ; Γ.get i, v lhs.vars)
                                                                                                                                                                                                            def rewritePeepholeAt {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [DecidableEq d.Ty] [Monad d.m] [DecidableEq d.Op] {Γ : List d.Ty} {t : d.Ty} {Γ₂ : Ctxt d.Ty} {eff : EffectKind} {t₂ : d.Ty} (pr : PeepholeRewrite d Γ t) (pos : ) (target : Com d Γ₂ eff t₂) :
                                                                                                                                                                                                            Com d Γ₂ eff t₂
                                                                                                                                                                                                            Equations
                                                                                                                                                                                                            • One or more equations did not get rendered due to their size.
                                                                                                                                                                                                            Instances For
                                                                                                                                                                                                              theorem denote_rewritePeepholeAt {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [DecidableEq d.Ty] [Monad d.m] [(t : d.Ty) → Inhabited t] [DecidableEq d.Op] [LawfulMonad d.m] {Γ : List d.Ty} {t : d.Ty} {Γ₂ : Ctxt d.Ty} {eff : EffectKind} {t₂ : d.Ty} (pr : PeepholeRewrite d Γ t) (pos : ) (target : Com d Γ₂ eff t₂) :
                                                                                                                                                                                                              (rewritePeepholeAt pr pos target).denote = target.denote
                                                                                                                                                                                                              def rewritePeephole_go {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [DecidableEq d.Ty] [Monad d.m] [DecidableEq d.Op] {Γ : List d.Ty} {t : d.Ty} {Γ₂ : Ctxt d.Ty} {eff : EffectKind} {t₂ : d.Ty} (fuel : ) (pr : PeepholeRewrite d Γ t) (ix : ) (target : Com d Γ₂ eff t₂) :
                                                                                                                                                                                                              Com d Γ₂ eff t₂

                                                                                                                                                                                                              rewrite with pr to target program, at location ix and later, running at most fuel steps.

                                                                                                                                                                                                              Equations
                                                                                                                                                                                                              Instances For
                                                                                                                                                                                                                def rewritePeephole {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [DecidableEq d.Ty] [Monad d.m] [DecidableEq d.Op] {Γ : List d.Ty} {t : d.Ty} {Γ₂ : Ctxt d.Ty} {eff : EffectKind} {t₂ : d.Ty} (fuel : ) (pr : PeepholeRewrite d Γ t) (target : Com d Γ₂ eff t₂) :
                                                                                                                                                                                                                Com d Γ₂ eff t₂

                                                                                                                                                                                                                rewrite with pr to target program, running at most fuel steps.

                                                                                                                                                                                                                Equations
                                                                                                                                                                                                                Instances For
                                                                                                                                                                                                                  theorem denote_rewritePeephole_go {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [DecidableEq d.Ty] [Monad d.m] [(t : d.Ty) → Inhabited t] [DecidableEq d.Op] [LawfulMonad d.m] {Γ : List d.Ty} {t : d.Ty} {Γ₂ : Ctxt d.Ty} {eff : EffectKind} {t₂ : d.Ty} {fuel : } (pr : PeepholeRewrite d Γ t) (pos : ) (target : Com d Γ₂ eff t₂) :
                                                                                                                                                                                                                  (rewritePeephole_go fuel pr pos target).denote = target.denote

                                                                                                                                                                                                                  rewritePeephole_go preserve semantics

                                                                                                                                                                                                                  theorem denote_rewritePeephole {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [DecidableEq d.Ty] [Monad d.m] [(t : d.Ty) → Inhabited t] [DecidableEq d.Op] [LawfulMonad d.m] {Γ : List d.Ty} {t : d.Ty} {Γ₂ : Ctxt d.Ty} {eff : EffectKind} {t₂ : d.Ty} (fuel : ) (pr : PeepholeRewrite d Γ t) (target : Com d Γ₂ eff t₂) :
                                                                                                                                                                                                                  (rewritePeephole fuel pr target).denote = target.denote

                                                                                                                                                                                                                  rewritePeephole preserves semantics.

                                                                                                                                                                                                                  theorem Expr.denote_eq_of_region_denote_eq {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [Monad d.m] {ty : d.Ty} {eff : EffectKind} {Γ : Ctxt d.Ty} (op : d.Op) (ty_eq : ty = DialectSignature.outTy op) (eff' : DialectSignature.effectKind op eff) (args : HVector Γ.Var (DialectSignature.sig op)) (regArgs : HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 EffectKind.impure t.2) (DialectSignature.regSig op)) (regArgs' : HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 EffectKind.impure t.2) (DialectSignature.regSig op)) (hregArgs' : regArgs'.denote = regArgs.denote) :
                                                                                                                                                                                                                  (Expr.mk op ty_eq eff' args regArgs').denote = (Expr.mk op ty_eq eff' args regArgs).denote
                                                                                                                                                                                                                  @[irreducible]
                                                                                                                                                                                                                  def rewritePeepholeRecursivelyRegArgs {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [DecidableEq d.Ty] [Monad d.m] [(t : d.Ty) → Inhabited t] [DecidableEq d.Op] [LawfulMonad d.m] {Γ : List d.Ty} {t : d.Ty} (fuel : ) (pr : PeepholeRewrite d Γ t) {ts : List (Ctxt d.Ty × d.Ty)} (args : HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 EffectKind.impure t.2) ts) :
                                                                                                                                                                                                                  { out : HVector (fun (t : Ctxt d.Ty × d.Ty) => Com d t.1 EffectKind.impure t.2) ts // out.denote = args.denote }
                                                                                                                                                                                                                  Equations
                                                                                                                                                                                                                  Instances For
                                                                                                                                                                                                                    @[irreducible]
                                                                                                                                                                                                                    def rewritePeepholeRecursivelyExpr {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [DecidableEq d.Ty] [Monad d.m] [(t : d.Ty) → Inhabited t] [DecidableEq d.Op] [LawfulMonad d.m] {Γ : List d.Ty} {t : d.Ty} {Γ₂ : Ctxt d.Ty} {eff : EffectKind} (fuel : ) (pr : PeepholeRewrite d Γ t) {ty : d.Ty} (e : Expr d Γ₂ eff ty) :
                                                                                                                                                                                                                    { out : Expr d Γ₂ eff ty // out.denote = e.denote }
                                                                                                                                                                                                                    Equations
                                                                                                                                                                                                                    • One or more equations did not get rendered due to their size.
                                                                                                                                                                                                                    Instances For
                                                                                                                                                                                                                      @[irreducible]
                                                                                                                                                                                                                      def rewritePeepholeRecursively {d : Dialect} [DialectSignature d] [TyDenote d.Ty] [DialectDenote d] [DecidableEq d.Ty] [Monad d.m] [(t : d.Ty) → Inhabited t] [DecidableEq d.Op] [LawfulMonad d.m] {Γ : List d.Ty} {t : d.Ty} {Γ₂ : Ctxt d.Ty} {eff : EffectKind} {t₂ : d.Ty} (fuel : ) (pr : PeepholeRewrite d Γ t) (target : Com d Γ₂ eff t₂) :
                                                                                                                                                                                                                      { out : Com d Γ₂ eff t₂ // out.denote = target.denote }

                                                                                                                                                                                                                      A peephole rewriter that recurses into regions, allowing peephole rewriting into nested code.

                                                                                                                                                                                                                      Equations
                                                                                                                                                                                                                      Instances For
                                                                                                                                                                                                                        def Com.getTy {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} :
                                                                                                                                                                                                                        Com d Γ eff tType
                                                                                                                                                                                                                        Equations
                                                                                                                                                                                                                        • x.getTy = d.Ty
                                                                                                                                                                                                                        Instances For
                                                                                                                                                                                                                          def Com.ty {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} :
                                                                                                                                                                                                                          Com d Γ eff td.Ty
                                                                                                                                                                                                                          Equations
                                                                                                                                                                                                                          • x.ty = t
                                                                                                                                                                                                                          Instances For
                                                                                                                                                                                                                            def Com.ctxt {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} :
                                                                                                                                                                                                                            Com d Γ eff tCtxt d.Ty
                                                                                                                                                                                                                            Equations
                                                                                                                                                                                                                            • x.ctxt = Γ
                                                                                                                                                                                                                            Instances For
                                                                                                                                                                                                                              def Expr.getTy {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} :
                                                                                                                                                                                                                              Expr d Γ eff tType
                                                                                                                                                                                                                              Equations
                                                                                                                                                                                                                              • x.getTy = d.Ty
                                                                                                                                                                                                                              Instances For
                                                                                                                                                                                                                                def Expr.ty {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} :
                                                                                                                                                                                                                                Expr d Γ eff td.Ty
                                                                                                                                                                                                                                Equations
                                                                                                                                                                                                                                • x.ty = t
                                                                                                                                                                                                                                Instances For
                                                                                                                                                                                                                                  def Expr.ctxt {d : Dialect} [DialectSignature d] {Γ : Ctxt d.Ty} {eff : EffectKind} {t : d.Ty} :
                                                                                                                                                                                                                                  Expr d Γ eff tCtxt d.Ty
                                                                                                                                                                                                                                  Equations
                                                                                                                                                                                                                                  • x.ctxt = Γ
                                                                                                                                                                                                                                  Instances For