Documentation

SSA.Core.ErasedContext

class TyDenote (β : Type) :

Typeclass for a baseType which is a Gödel code of Lean types.

Intuitively, each b : β represents a Lean Type, but using β instead of Type directly avoids a universe bump

  • toType : βType
Instances
    Equations
    def Ctxt (Ty : Type) :
    Equations
    Instances For
      def Ctxt.empty {Ty : Type} :
      Ctxt Ty
      Equations
      • Ctxt.empty = []
      Instances For
        Equations
        • Ctxt.instEmptyCollection = { emptyCollection := Ctxt.empty }
        instance Ctxt.instInhabited {Ty : Type} :
        Equations
        • Ctxt.instInhabited = { default := Ctxt.empty }
        theorem Ctxt.empty_eq {Ty : Type} :
        = []
        @[match_pattern]
        def Ctxt.snoc {Ty : Type} :
        Ctxt TyTyCtxt Ty
        Equations
        • tl.snoc hd = hd :: tl
        Instances For
          def Ctxt.ofList {Ty : Type} :
          List TyCtxt Ty

          Turn a list of types into a context

          Equations
          • Γ = Γ
          Instances For
            def Ctxt.get? {Ty : Type} :
            Ctxt TyOption Ty
            Equations
            • Ctxt.get? = List.get?
            Instances For
              def Ctxt.map {Ty₁ : Type} {Ty₂ : Type} (f : Ty₁Ty₂) :
              Ctxt Ty₁Ctxt Ty₂

              Map a function from one type universe to another over a context

              Equations
              Instances For
                @[simp]
                theorem Ctxt.map_nil {Ty : Type} {Ty' : Type} (f : TyTy') :
                @[simp]
                theorem Ctxt.map_cons {Ty : Type} {Ty' : Type} (Γ : Ctxt Ty) (t : Ty) (f : TyTy') :
                Ctxt.map f (t :: Γ) = f t :: Ctxt.map f Γ
                theorem Ctxt.map_snoc {Ty : Type} {a : Ty} :
                ∀ {Ty_1 : Type} {f : TyTy_1} (Γ : Ctxt Ty), Ctxt.map f (Γ.snoc a) = (Ctxt.map f Γ).snoc (f a)
                Equations
                def Ctxt.recOn {Ty : Type} {motive : Ctxt TySort u_1} (nil : motive Ctxt.empty) (snoc : (Γ : Ctxt Ty) → (t : Ty) → motive Γmotive (Γ.snoc t)) (Γ : Ctxt Ty) :
                motive Γ

                Recursion principle for contexts in terms of Ctxt.nil and Ctxt.snoc

                Equations
                Instances For
                  def Ctxt.Var {Ty : Type} (Γ : Ctxt Ty) (t : Ty) :
                  Equations
                  Instances For
                    def Ctxt.Var.mk {Ty : Type} (Γ : Ctxt Ty) (t : Ty) (i : ) (hi : Γ.get? i = some t) :
                    Γ.Var t

                    constructor for Var.

                    Equations
                    Instances For
                      instance Ctxt.Var.instDecidableEq :
                      {Ty : Type} → {Γ : Ctxt Ty} → {t : Ty} → DecidableEq (Γ.Var t)
                      Equations
                      • Ctxt.Var.instDecidableEq = id inferInstance
                      @[match_pattern]
                      def Ctxt.Var.last {Ty : Type} (Γ : Ctxt Ty) (t : Ty) :
                      (Γ.snoc t).Var t
                      Equations
                      Instances For
                        def Ctxt.Var.emptyElim {Ty : Type} {α : Sort u_1} {t : Ty} :
                        Ctxt.Var [] tα
                        Equations
                        Instances For
                          def Ctxt.Var.toSnoc {Ty : Type} {Γ : Ctxt Ty} {t : Ty} {t' : Ty} (var : Γ.Var t) :
                          (Γ.snoc t').Var t

                          Take a variable in a context Γ and get the corresponding variable in context Γ.snoc t. This is marked as a coercion.

                          Equations
                          • var = var + 1,
                          Instances For
                            @[simp]
                            theorem Ctxt.Var.zero_eq_last {Ty : Type} {Γ : Ctxt Ty} {t : Ty} (h : (Γ.snoc t).get? 0 = some t) :
                            0, h = Ctxt.Var.last Γ t
                            @[simp]
                            theorem Ctxt.Var.succ_eq_toSnoc {Ty : Type} {t' : Ty} {Γ : Ctxt Ty} {t : Ty} {w : } (h : (Γ.snoc t).get? (w + 1) = some t') :
                            w + 1, h = w, h
                            def Ctxt.Var.toMap :
                            {Ty : Type} → {Γ : Ctxt Ty} → {t : Ty} → {Ty_1 : Type} → {f : TyTy_1} → Γ.Var t(Ctxt.map f Γ).Var (f t)

                            Transport a variable from Γ to any mapped context Γ.map f

                            Equations
                            Instances For
                              def Ctxt.Var.cast {Op : Type} {ty₁ : Op} {ty₂ : Op} {Γ : Ctxt Op} (h_eq : ty₁ = ty₂) :
                              Γ.Var ty₁Γ.Var ty₂
                              Equations
                              Instances For
                                def Ctxt.Var.castCtxt {Op : Type} {Δ : Ctxt Op} {ty : Op} {Γ : Ctxt Op} (h_eq : Γ = Δ) :
                                Γ.Var tyΔ.Var ty
                                Equations
                                Instances For
                                  @[simp]
                                  theorem Ctxt.Var.cast_rfl :
                                  ∀ {Ty : Type} {Γ : Ctxt Ty} {t : Ty} (v : Γ.Var t) (h : t = t), Ctxt.Var.cast h v = v
                                  @[simp]
                                  theorem Ctxt.Var.castCtxt_rfl :
                                  ∀ {Ty : Type} {Γ : Ctxt Ty} {t : Ty} (v : Γ.Var t) (h : Γ = Γ), Ctxt.Var.castCtxt h v = v
                                  @[simp]
                                  theorem Ctxt.Var.castCtxt_castCtxt :
                                  ∀ {Ty : Type} {Γ : Ctxt Ty} {t : Ty} {Δ Ξ : Ctxt Ty} (v : Γ.Var t) (h₁ : Γ = Δ) (h₂ : Δ = Ξ), Ctxt.Var.castCtxt h₂ (Ctxt.Var.castCtxt h₁ v) = Ctxt.Var.castCtxt v
                                  @[simp]
                                  theorem Ctxt.Var.toMap_last {Ty : Type} :
                                  ∀ {Ty_1 : Type} {f : TyTy_1} {Γ : Ctxt Ty} {t : Ty}, (Ctxt.Var.last Γ t).toMap = Ctxt.Var.last (Ctxt.map f Γ) (f t)
                                  @[simp]
                                  theorem Ctxt.Var.toSnoc_toMap {Ty : Type} {t' : Ty} {Ty₂ : Type} {Γ : Ctxt Ty} {t : Ty} {var : Γ.Var t'} {f : TyTy₂} :
                                  (↑var).toMap = var.toMap
                                  def Ctxt.Var.casesOn {Ty : Type} {motive : (Γ : Ctxt Ty) → (t t' : Ty) → (Γ.snoc t').Var tSort u_1} {Γ : Ctxt Ty} {t : Ty} {t' : Ty} (v : (Γ.snoc t').Var t) (toSnoc : {t t' : Ty} → {Γ : Ctxt Ty} → (v : Γ.Var t) → motive Γ t t' v) (last : {Γ : Ctxt Ty} → {t : Ty} → motive Γ t t (Ctxt.Var.last Γ t)) :
                                  motive Γ t t' v

                                  This is an induction principle that case splits on whether or not a variable is the last variable in a context.

                                  Equations
                                  Instances For
                                    @[simp]
                                    def Ctxt.Var.casesOn_last {Ty : Type} {motive : (Γ : Ctxt Ty) → (t t' : Ty) → (Γ.snoc t').Var tSort u_1} {Γ : Ctxt Ty} {t : Ty} (base : {t t' : Ty} → {Γ : Ctxt Ty} → (v : Γ.Var t) → motive Γ t t' v) (last : {Γ : Ctxt Ty} → {t : Ty} → motive Γ t t (Ctxt.Var.last Γ t)) :
                                    (Ctxt.Var.casesOn (Ctxt.Var.last Γ t) (fun {t t' : Ty} {Γ : Ctxt Ty} => base) fun {Γ : Ctxt Ty} {t : Ty} => last) = last

                                    Ctxt.Var.casesOn behaves in the expected way when applied to the last variable

                                    Equations
                                    • =
                                    Instances For
                                      @[simp]
                                      def Ctxt.Var.casesOn_toSnoc {Ty : Type} {motive : (Γ : Ctxt Ty) → (t t' : Ty) → (Γ.snoc t').Var tSort u_1} {Γ : Ctxt Ty} {t : Ty} {t' : Ty} (v : Γ.Var t) (base : {t t' : Ty} → {Γ : Ctxt Ty} → (v : Γ.Var t) → motive Γ t t' v) (last : {Γ : Ctxt Ty} → {t : Ty} → motive Γ t t (Ctxt.Var.last Γ t)) :
                                      (Ctxt.Var.casesOn (↑v) (fun {t t' : Ty} {Γ : Ctxt Ty} => base) fun {Γ : Ctxt Ty} {t : Ty} => last) = base v

                                      Ctxt.Var.casesOn behaves in the expected way when applied to a previous variable, that is not the last one.

                                      Equations
                                      • =
                                      Instances For
                                        theorem Ctxt.toSnoc_injective {Ty : Type} {Γ : Ctxt Ty} {t : Ty} {t' : Ty} :
                                        Function.Injective Ctxt.Var.toSnoc
                                        @[reducible, inline]
                                        abbrev Ctxt.Hom {Ty : Type} (Γ : Ctxt Ty) (Γ' : Ctxt Ty) :
                                        Equations
                                        • Γ.Hom Γ' = (⦃t : Ty⦄ → Γ.Var tΓ'.Var t)
                                        Instances For
                                          @[reducible, inline]
                                          abbrev Ctxt.Hom.id {Ty : Type} {Γ : Ctxt Ty} :
                                          Γ.Hom Γ
                                          Equations
                                          Instances For
                                            def Ctxt.Hom.comp {Ty : Type} {Γ : Ctxt Ty} {Γ' : Ctxt Ty} {Γ'' : Ctxt Ty} (self : Γ.Hom Γ') (rangeMap : Γ'.Hom Γ'') :
                                            Γ.Hom Γ''

                                            f.comp g := g(f(x))

                                            Equations
                                            • self.comp rangeMap v = rangeMap (self v)
                                            Instances For
                                              def Ctxt.Hom.with {Ty : Type} [DecidableEq Ty] {Γ₁ : Ctxt Ty} {Γ₂ : Ctxt Ty} (f : Γ₁.Hom Γ₂) {t : Ty} (v₁ : Γ₁.Var t) (v₂ : Γ₂.Var t) :
                                              Γ₁.Hom Γ₂

                                              map.with v₁ v₂ adjusts a single variable of a Context map, so that in the resulting map

                                              • v₁ now maps to v₂
                                              • all other variables v still map to map v as in the original map
                                              Equations
                                              • f.with v₁ v₂ w = if h : ∃ (ty_eq : t = t'), w = v₁ then Ctxt.Var.cast v₂ else f w
                                              Instances For
                                                def Ctxt.Hom.snocMap {Ty : Type} {Γ : Ctxt Ty} {Γ' : Ctxt Ty} (f : Γ.Hom Γ') {t : Ty} :
                                                (Γ.snoc t).Hom (Γ'.snoc t)
                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  @[reducible, inline]
                                                  abbrev Ctxt.Hom.snocRight {Ty : Type} {Γ : Ctxt Ty} {Γ' : Ctxt Ty} (f : Γ.Hom Γ') {t : Ty} :
                                                  Γ.Hom (Γ'.snoc t)
                                                  Equations
                                                  • f.snocRight v = (f v)
                                                  Instances For
                                                    def Ctxt.Hom.unSnoc :
                                                    {Ty : Type} → {Δ Γ : Ctxt Ty} → {t : Ty} → (Γ.snoc t).Hom ΔΓ.Hom Δ

                                                    Remove a type from the domain (left) context

                                                    Equations
                                                    • f.unSnoc v = f v
                                                    Instances For
                                                      @[simp]
                                                      theorem Ctxt.Hom.unSnoc_apply {Ty : Type} {t : Ty} {Δ : Ctxt Ty} {u : Ty} {Γ : Ctxt Ty} (f : (Γ.snoc t).Hom Δ) (v : Γ.Var u) :
                                                      f.unSnoc v = f v
                                                      instance Ctxt.instCoeVarSnoc {Ty : Type} {t : Ty} {t' : Ty} {Γ : Ctxt Ty} :
                                                      Coe (Γ.Var t) ((Γ.snoc t').Var t)
                                                      Equations
                                                      • Ctxt.instCoeVarSnoc = { coe := Ctxt.Var.toSnoc }
                                                      def Ctxt.Valuation {Ty : Type} [TyDenote Ty] (Γ : Ctxt Ty) :

                                                      A valuation for a context. Provide a way to evaluate every variable in a context.

                                                      Equations
                                                      • Γ.Valuation = (⦃t : Ty⦄ → Γ.Var tt)
                                                      Instances For
                                                        def Ctxt.Valuation.eval {Ty : Type} [TyDenote Ty] {Γ : Ctxt Ty} (VAL : Γ.Valuation) ⦃t : Ty (v : Γ.Var t) :

                                                        A valuation for a context. Provide a way to evaluate every variable in a context.

                                                        Equations
                                                        • VAL.eval v = VAL v
                                                        Instances For

                                                          Make a valuation for the empty context.

                                                          Equations
                                                          Instances For
                                                            Equations
                                                            • Ctxt.instInhabitedValuationNil = { default := Ctxt.Valuation.nil }
                                                            def Ctxt.Valuation.snoc {Ty : Type} [TyDenote Ty] {Γ : Ctxt Ty} {t : Ty} (s : Γ.Valuation) (x : t) :
                                                            (Γ.snoc t).Valuation

                                                            Make a valuation for Γ.snoc t from a valuation for Γ and an element of t.toType.

                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For
                                                              theorem Ctxt.Valuation.snoc_eq {Ty : Type} [TyDenote Ty] {Γ : Ctxt Ty} {t : Ty} (s : Γ.Valuation) (x : t) :
                                                              (s::ᵥx) = fun (t_1 : Ty) (var : (Γ.snoc t).Var t_1) => match var with | 0, hvar => x | i.succ, hvar => s i, hvar

                                                              Show the equivalence between the definition in terms of snoc and snoc'.

                                                              @[simp]
                                                              theorem Ctxt.Valuation.snoc_last {Ty : Type} [TyDenote Ty] {Γ : Ctxt Ty} {t : Ty} (s : Γ.Valuation) (x : t) :
                                                              (s::ᵥx) (Ctxt.Var.last Γ t) = x
                                                              @[simp]
                                                              theorem Ctxt.Valuation.snoc_zero {Ty : Type} [TyDenote Ty] {Γ : Ctxt Ty} {ty : Ty} (s : Γ.Valuation) (x : ty) (h : (Γ.snoc ty).get? 0 = some ty) :
                                                              (s::ᵥx) 0, h = x
                                                              @[simp]
                                                              theorem Ctxt.Valuation.snoc_toSnoc {Ty : Type} [TyDenote Ty] {Γ : Ctxt Ty} {t : Ty} {t' : Ty} (s : Γ.Valuation) (x : t) (v : Γ.Var t') :
                                                              (s::ᵥx) v = s v

                                                              Helper to simplify context manipulation with toSnoc and variable access. #

                                                              @[simp]
                                                              theorem Ctxt.Valuation.snoc_eval {Ty : Type} [TyDenote Ty] {n : } {var_val : Ty} {ty : Ty} (Γ : Ctxt Ty) (V : Γ.Valuation) (v : ty) (hvar : (Γ.snoc ty).get? (n + 1) = some var_val) :
                                                              (V::ᵥv) n + 1, hvar = V n, hvar

                                                              (ctx.snoc v₁) ⟨n+1, _⟩ = ctx ⟨n, _⟩

                                                              theorem Ctxt.Valuation.eq_nil {Ty : Type} [TyDenote Ty] (V : Ctxt.empty.Valuation) :
                                                              V = Ctxt.Valuation.nil

                                                              There is only one distinct valuation for the empty context

                                                              @[simp]
                                                              theorem Ctxt.Valuation.snoc_toSnoc_last {Ty : Type} [TyDenote Ty] {Γ : Ctxt Ty} {t : Ty} (V : (Γ.snoc t).Valuation) :
                                                              ((fun (t_1 : Ty) (v' : Γ.Var t_1) => V v')::ᵥV (Ctxt.Var.last Γ t)) = V
                                                              def Ctxt.Valuation.singleton {Ty : Type} [TyDenote Ty] {t : Ty} (v : t) :

                                                              Make a a valuation for a singleton value

                                                              Equations
                                                              Instances For
                                                                def Ctxt.Valuation.ofHVector {Ty : Type} [TyDenote Ty] {types : List Ty} :
                                                                HVector TyDenote.toType types(↑types).Valuation

                                                                Build valuation from a vector of values of types types.

                                                                Equations
                                                                Instances For
                                                                  def Ctxt.Valuation.ofPair {Ty : Type} [TyDenote Ty] {t₁ : Ty} {t₂ : Ty} (v₁ : t₁) (v₂ : t₂) :
                                                                  (↑[t₁, t₂]).Valuation

                                                                  Build valuation from a vector of values of types types.

                                                                  Equations
                                                                  Instances For
                                                                    @[simp]
                                                                    theorem Ctxt.Valuation.ofPair_fst {Ty : Type} [TyDenote Ty] {t₁ : Ty} {t₂ : Ty} (v₁ : t₁) (v₂ : t₂) :
                                                                    Ctxt.Valuation.ofPair v₁ v₂ 0, = v₁
                                                                    @[simp]
                                                                    theorem Ctxt.Valuation.ofPair_snd {Ty : Type} [TyDenote Ty] {t₁ : Ty} {t₂ : Ty} (v₁ : t₁) (v₂ : t₂) :
                                                                    Ctxt.Valuation.ofPair v₁ v₂ 1, = v₂
                                                                    def Ctxt.Valuation.comap {Ty : Type} [TyDenote Ty] {Γi : Ctxt Ty} {Γo : Ctxt Ty} (Γiv : Γi.Valuation) (hom : Γo.Hom Γi) :
                                                                    Γo.Valuation

                                                                    transport/pullback a valuation along a context homomorphism.

                                                                    Equations
                                                                    • Γiv.comap hom vo = Γiv (hom vo)
                                                                    Instances For
                                                                      @[simp]
                                                                      theorem Ctxt.Valuation.comap_snoc_snocMap {Ty : Type} [TyDenote Ty] {Γ : Ctxt Ty} {Γ_out : Ctxt Ty} (V : Γ_out.Valuation) {t : Ty} (x : t) (map : Γ.Hom Γ_out) :
                                                                      (V::ᵥx).comap map.snocMap = (V.comap map::ᵥx)
                                                                      @[simp]
                                                                      theorem Ctxt.Valuation.comap_id {Ty : Type} [TyDenote Ty] {Γ : Ctxt Ty} (Γv : Γ.Valuation) :
                                                                      Γv.comap Ctxt.Hom.id = Γv
                                                                      @[simp]
                                                                      theorem Ctxt.Valuation.comap_snoc_snocRight {Ty : Type} [TyDenote Ty] :
                                                                      ∀ {a : Ty} {x : a} {Γ Δ : Ctxt Ty} (Γv : Γ.Valuation) (f : Δ.Hom Γ), (Γv::ᵥx).comap f.snocRight = Γv.comap f
                                                                      def Ctxt.Valuation.reassignVar {Ty : Type} [TyDenote Ty] [DecidableEq Ty] {t : Ty} {Γ : Ctxt Ty} (V : Γ.Valuation) (var : Γ.Var t) (val : t) :
                                                                      Γ.Valuation

                                                                      Reassign the variable var to value val in context ctxt

                                                                      Equations
                                                                      • V.reassignVar var val vneedle = if h : ∃ (h : t = tneedle), vneedle = var then val else V vneedle
                                                                      Instances For
                                                                        @[simp]
                                                                        theorem Ctxt.Valuation.comap_with {Ty : Type} [TyDenote Ty] {ty : Ty} [DecidableEq Ty] {Γ : Ctxt Ty} {Δ : Ctxt Ty} {Γv : Γ.Valuation} {map : Δ.Hom Γ} {v : Δ.Var ty} {w : Γ.Var ty} :
                                                                        Γv.comap (map.with v w) = (Γv.comap map).reassignVar v (Γv w)
                                                                        def Ctxt.Valuation.recOn {Ty : Type} [TyDenote Ty] {motive : {Γ : Ctxt Ty} → Γ.ValuationSort u_1} (nil : motive Ctxt.Valuation.nil) (snoc : {Γ : Ctxt Ty} → {t : Ty} → (V : Γ.Valuation) → (v : t) → motive Vmotive (V::ᵥv)) {Γ : Ctxt Ty} (V : Γ.Valuation) :
                                                                        motive V

                                                                        Recursion principle for valuations in terms of Valuation.nil and Valuation.snoc

                                                                        Equations
                                                                        • One or more equations did not get rendered due to their size.
                                                                        Instances For
                                                                          def Ctxt.Valuation.cast {Ty : Type} [TyDenote Ty] {Γ : Ctxt Ty} {Δ : Ctxt Ty} (h : Γ = Δ) (V : Γ.Valuation) :
                                                                          Δ.Valuation
                                                                          Equations
                                                                          Instances For
                                                                            @[simp]
                                                                            theorem Ctxt.Valuation.cast_rfl {Ty : Type} [TyDenote Ty] {Γ : Ctxt Ty} (h : Γ = Γ) (V : Γ.Valuation) :
                                                                            theorem Ctxt.Valuation.reassignVar_eq_of_lookup {Ty : Type} [TyDenote Ty] {t : Ty} [DecidableEq Ty] {Γ : Ctxt Ty} {V : Γ.Valuation} {var : Γ.Var t} :
                                                                            V.reassignVar var (V var) = V

                                                                            reassigning a variable to the same value that has been looked up is identity.

                                                                            @[reducible, inline]
                                                                            abbrev Ctxt.VarSet {Ty : Type} (Γ : Ctxt Ty) :

                                                                            VarSet Γ is the type of sets of variables from context Γ

                                                                            Equations
                                                                            • Γ.VarSet = Finset ((t : Ty) × Γ.Var t)
                                                                            Instances For
                                                                              def Ctxt.VarSet.ofVar {Ty : Type} {t : Ty} {Γ : Ctxt Ty} (v : Γ.Var t) :
                                                                              Γ.VarSet

                                                                              A VarSet with exactly one variable v

                                                                              Equations
                                                                              Instances For
                                                                                @[simp]
                                                                                theorem Ctxt.Var.val_last {Ty : Type} {Γ : Ctxt Ty} {t : Ty} :
                                                                                (Ctxt.Var.last Γ t) = 0
                                                                                @[simp]
                                                                                theorem Ctxt.Var.val_toSnoc {Ty : Type} {Γ : Ctxt Ty} {t : Ty} {t' : Ty} (v : Γ.Var t) :
                                                                                v = v + 1
                                                                                instance Ctxt.Var.instRepr :
                                                                                {Ty : Type} → {Γ : Ctxt Ty} → {t : Ty} → Repr (Γ.Var t)
                                                                                Equations
                                                                                @[reducible, inline]
                                                                                abbrev Ctxt.Diff.Valid {Ty : Type} (Γ₁ : Ctxt Ty) (Γ₂ : Ctxt Ty) (d : ) :
                                                                                Equations
                                                                                Instances For
                                                                                  def Ctxt.Diff {Ty : Type} (Γ₁ : Ctxt Ty) (Γ₂ : Ctxt Ty) :

                                                                                  If Γ₁ is a prefix of Γ₂, then d : Γ₁.Diff Γ₂ represents the number of elements that Γ₂ has more than Γ₁

                                                                                  Equations
                                                                                  Instances For
                                                                                    def Ctxt.Diff.zero {Ty : Type} (Γ : Ctxt Ty) :
                                                                                    Γ.Diff Γ

                                                                                    The difference between any context and itself is 0

                                                                                    Equations
                                                                                    Instances For
                                                                                      def Ctxt.Diff.toSnoc :
                                                                                      {Ty : Type} → {Γ₁ Γ₂ : Ctxt Ty} → {t : Ty} → Γ₁.Diff Γ₂Γ₁.Diff (Γ₂.snoc t)

                                                                                      Adding a new type to the right context corresponds to incrementing the difference by 1

                                                                                      Equations
                                                                                      • d.toSnoc = d + 1,
                                                                                      Instances For
                                                                                        def Ctxt.Diff.unSnoc :
                                                                                        {Ty : Type} → {Γ₂ Γ₁ : Ctxt Ty} → {t : Ty} → (Γ₁.snoc t).Diff Γ₂Γ₁.Diff Γ₂

                                                                                        Removing a type from the left context corresponds to incrementing the difference by 1

                                                                                        Equations
                                                                                        • d.unSnoc = d + 1,
                                                                                        Instances For

                                                                                          toMap #

                                                                                          def Ctxt.Diff.toMap :
                                                                                          {Ty : Type} → {Γ₁ Γ₂ : Ctxt Ty} → {Ty_1 : Type} → {f : TyTy_1} → Γ₁.Diff Γ₂(Ctxt.map f Γ₁).Diff (Ctxt.map f Γ₂)

                                                                                          Mapping over contexts does not change their difference

                                                                                          Equations
                                                                                          • d = d,
                                                                                          Instances For

                                                                                            append #

                                                                                            theorem Ctxt.Diff.append_valid {Ty : Type} {Γ₁ : Ctxt Ty} {Γ₂ : Ctxt Ty} {Γ₃ : Ctxt Ty} {d₁ : } {d₂ : } :
                                                                                            Ctxt.Diff.Valid Γ₁ Γ₂ d₁Ctxt.Diff.Valid Γ₂ Γ₃ d₂Ctxt.Diff.Valid Γ₁ Γ₃ (d₁ + d₂)
                                                                                            def Ctxt.Diff.append :
                                                                                            {Ty : Type} → {Γ₁ Γ₂ Γ₃ : Ctxt Ty} → Γ₁.Diff Γ₂Γ₂.Diff Γ₃Γ₁.Diff Γ₃

                                                                                            Addition of the differences of two contexts

                                                                                            Equations
                                                                                            • d₁.append d₂ = d₁ + d₂,
                                                                                            Instances For

                                                                                              toHom #

                                                                                              def Ctxt.Diff.toHom :
                                                                                              {Ty : Type} → {Γ₁ Γ₂ : Ctxt Ty} → Γ₁.Diff Γ₂Γ₁.Hom Γ₂

                                                                                              Adding the difference of two contexts to variable indices is a context mapping

                                                                                              Equations
                                                                                              • d.toHom v = v + d,
                                                                                              Instances For
                                                                                                theorem Ctxt.Diff.Valid.of_succ {Ty : Type} {t : Ty} {Γ₁ : Ctxt Ty} {Γ₂ : Ctxt Ty} {d : } (h_valid : Ctxt.Diff.Valid Γ₁ (Γ₂.snoc t) (d + 1)) :
                                                                                                Ctxt.Diff.Valid Γ₁ Γ₂ d
                                                                                                theorem Ctxt.Diff.toHom_succ {Ty : Type} {t : Ty} {Γ₁ : Ctxt Ty} {Γ₂ : Ctxt Ty} {d : } (h : Ctxt.Diff.Valid Γ₁ (Γ₂.snoc t) (d + 1)) :
                                                                                                Ctxt.Diff.toHom d + 1, = (Ctxt.Diff.toHom d, ).snocRight
                                                                                                @[simp]
                                                                                                theorem Ctxt.Diff.toHom_zero {Ty : Type} {Γ : Ctxt Ty} {h : Ctxt.Diff.Valid Γ Γ 0} :
                                                                                                Ctxt.Diff.toHom 0, = Ctxt.Hom.id
                                                                                                @[simp]
                                                                                                theorem Ctxt.Diff.toHom_unSnoc {Ty : Type} {t : Ty} {Γ₁ : Ctxt Ty} {Γ₂ : Ctxt Ty} (d : (Γ₁.snoc t).Diff Γ₂) :
                                                                                                d.unSnoc.toHom = fun (x : Ty) (v : Γ₁.Var x) => d.toHom v

                                                                                                add #

                                                                                                def Ctxt.Diff.add :
                                                                                                {Ty : Type} → {Γ₁ Γ₂ Γ₃ : Ctxt Ty} → Γ₁.Diff Γ₂Γ₂.Diff Γ₃Γ₁.Diff Γ₃
                                                                                                Equations
                                                                                                Instances For
                                                                                                  instance Ctxt.Diff.instHAdd :
                                                                                                  {Ty : Type} → {Γ₁ Γ₂ Γ₃ : Ctxt Ty} → HAdd (Γ₁.Diff Γ₂) (Γ₂.Diff Γ₃) (Γ₁.Diff Γ₃)
                                                                                                  Equations
                                                                                                  • Ctxt.Diff.instHAdd = { hAdd := Ctxt.Diff.add }
                                                                                                  def Ctxt.Diff.cast :
                                                                                                  {Ty : Type} → {Γ Γ' Δ Δ' : Ctxt Ty} → Γ = Γ'Δ = Δ'Γ.Diff ΔΓ'.Diff Δ'
                                                                                                  Equations
                                                                                                  Instances For
                                                                                                    structure Ctxt.DerivedCtxt {Ty : Type} (Γ : Ctxt Ty) :

                                                                                                    Δ : DerivedCtxt Γ means that Δ is a context obtained by adding elements to context Γ. That is, there exists a context difference diff : Γ.Diff Δ.

                                                                                                    • ctxt : Ctxt Ty
                                                                                                    • diff : Γ.Diff self.ctxt
                                                                                                    Instances For
                                                                                                      @[reducible, inline]
                                                                                                      abbrev Ctxt.DerivedCtxt.ofCtxt {Ty : Type} (Γ : Ctxt Ty) :
                                                                                                      Γ.DerivedCtxt

                                                                                                      Every context is trivially derived from itself

                                                                                                      Equations
                                                                                                      Instances For
                                                                                                        @[simp]
                                                                                                        theorem Ctxt.DerivedCtxt.ofCtxt_empty {Ty : Type} :
                                                                                                        Ctxt.DerivedCtxt.ofCtxt [] = { ctxt := [], diff := Ctxt.Diff.zero [] }

                                                                                                        value of a dervied context from an empty context, is the empty context with a zero diff.

                                                                                                        def Ctxt.DerivedCtxt.snoc {Ty : Type} {Γ : Ctxt Ty} :
                                                                                                        Γ.DerivedCtxtTyΓ.DerivedCtxt

                                                                                                        snoc of a derived context applies snoc to the underlying context, and updates the diff

                                                                                                        Equations
                                                                                                        • { ctxt := ctxt, diff := diff }.snoc x = { ctxt := x :: ctxt, diff := diff.toSnoc }
                                                                                                        Instances For
                                                                                                          theorem Ctxt.DerivedCtxt.snoc_ctxt_eq_ctxt_snoc :
                                                                                                          ∀ {Ty : Type} {Γ : Ctxt Ty} {Γ_1 : Γ.DerivedCtxt} {ty : Ty}, (Γ_1.snoc ty).ctxt = Γ_1.ctxt.snoc ty
                                                                                                          instance Ctxt.DerivedCtxt.instCoeHead {Ty : Type} {Γ : Ctxt Ty} :
                                                                                                          CoeHead Γ.DerivedCtxt (Ctxt Ty)
                                                                                                          Equations
                                                                                                          • Ctxt.DerivedCtxt.instCoeHead = { coe := fun (x : Γ.DerivedCtxt) => match x with | { ctxt := Γ', diff := diff } => Γ' }
                                                                                                          instance Ctxt.DerivedCtxt.instCoeDep {Ty : Type} {Γ : Ctxt Ty} :
                                                                                                          CoeDep (Ctxt Ty) Γ Γ.DerivedCtxt
                                                                                                          Equations
                                                                                                          • Ctxt.DerivedCtxt.instCoeDep = { coe := { ctxt := Γ, diff := Ctxt.Diff.zero Γ } }
                                                                                                          instance Ctxt.DerivedCtxt.instCoeHeadMatch_1 {Ty : Type} {Γ : Ctxt Ty} {Γ' : Γ.DerivedCtxt} :
                                                                                                          CoeHead (match Γ' with | { ctxt := Γ', diff := diff } => Γ').DerivedCtxt Γ.DerivedCtxt
                                                                                                          Equations
                                                                                                          • One or more equations did not get rendered due to their size.
                                                                                                          instance Ctxt.DerivedCtxt.instCoeVar {Ty : Type} {Γ : Ctxt Ty} {t : Ty} {Γ' : Γ.DerivedCtxt} :
                                                                                                          Coe (Γ.Var t) ((match Γ' with | { ctxt := Γ', diff := diff } => Γ').Var t)
                                                                                                          Equations
                                                                                                          • Ctxt.DerivedCtxt.instCoeVar = { coe := fun (v : Γ.Var t) => { ctxt := Γ'_1, diff := diff }.diff.toHom v }

                                                                                                          dropUntil #

                                                                                                          def Ctxt.dropUntil {Ty : Type} {ty : Ty} (Γ : Ctxt Ty) (v : Γ.Var ty) :
                                                                                                          Ctxt Ty

                                                                                                          Γ.dropUntil v is the largest prefix of context Γ that no longer contains variable v

                                                                                                          Equations
                                                                                                          Instances For
                                                                                                            @[simp]
                                                                                                            theorem Ctxt.dropUntil_last :
                                                                                                            ∀ {Ty : Type} {Γ : Ctxt Ty} {ty : Ty}, (Γ.snoc ty).dropUntil (Ctxt.Var.last Γ ty) = Γ
                                                                                                            @[simp]
                                                                                                            theorem Ctxt.dropUntil_toSnoc :
                                                                                                            ∀ {Ty : Type} {Γ : Ctxt Ty} {ty t : Ty} {v : Γ.Var t}, (Γ.snoc ty).dropUntil v = Γ.dropUntil v
                                                                                                            def Ctxt.dropUntilDiff {Ty : Type} {ty : Ty} {Γ : Ctxt Ty} {v : Γ.Var ty} :
                                                                                                            (Γ.dropUntil v).Diff Γ

                                                                                                            The difference between Γ.dropUntil v and Γ is exactly v.val + 1

                                                                                                            Equations
                                                                                                            • Ctxt.dropUntilDiff = v + 1,
                                                                                                            Instances For
                                                                                                              @[reducible, inline]
                                                                                                              abbrev Ctxt.dropUntilHom :
                                                                                                              {Ty : Type} → {Γ : Ctxt Ty} → {t : Ty} → {v : Γ.Var t} → (Γ.dropUntil v).Hom Γ

                                                                                                              Context homomorphism from (Γ.dropUntil v) to Γ, see also dropUntilDiff

                                                                                                              Equations
                                                                                                              • Ctxt.dropUntilHom = Ctxt.dropUntilDiff.toHom
                                                                                                              Instances For
                                                                                                                @[simp]
                                                                                                                theorem Ctxt.dropUntilHom_last :
                                                                                                                ∀ {Ty : Type} {Γ : Ctxt Ty} {ty : Ty}, Ctxt.dropUntilHom = Ctxt.Hom.id.snocRight
                                                                                                                @[simp]
                                                                                                                theorem Ctxt.dropUntilHom_toSnoc :
                                                                                                                ∀ {Ty : Type} {Γ : Ctxt Ty} {t t' : Ty} {v : Γ.Var t}, Ctxt.dropUntilHom = Ctxt.dropUntilHom.snocRight