Documentation

Mathlib.GroupTheory.Congruence.Basic

Congruence relations #

This file proves basic properties of the quotient of a type by a congruence relation.

The second half of the file concerns congruence relations on monoids, in which case the quotient by the congruence relation is also a monoid. There are results about the universal property of quotients of monoids, and the isomorphism theorems for monoids.

Implementation notes #

A congruence relation on a monoid M can be thought of as a submonoid of M × M for which membership is an equivalence relation, but whilst this fact is established in the file, it is not used, since this perspective adds more layers of definitional unfolding.

Tags #

congruence, congruence relation, quotient, quotient by congruence relation, monoid, quotient monoid, isomorphism theorems

def Con.prod {M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (c : Con M) (d : Con N) :
Con (M × N)

Given types with multiplications M, N, the product of two congruence relations c on M and d on N: (x₁, x₂), (y₁, y₂) ∈ M × N are related by c.prod d iff x₁ is related to y₁ by c and x₂ is related to y₂ by d.

Equations
  • c.prod d = { toSetoid := c.prod d.toSetoid, mul' := }
Instances For
    def AddCon.prod {M : Type u_1} {N : Type u_2} [Add M] [Add N] (c : AddCon M) (d : AddCon N) :
    AddCon (M × N)

    Given types with additions M, N, the product of two congruence relations c on M and d on N: (x₁, x₂), (y₁, y₂) ∈ M × N are related by c.prod d iff x₁ is related to y₁ by c and x₂ is related to y₂ by d.

    Equations
    • c.prod d = { toSetoid := c.prod d.toSetoid, add' := }
    Instances For
      theorem AddCon.prod.proof_1 {M : Type u_1} {N : Type u_2} [Add M] [Add N] (c : AddCon M) (d : AddCon N) :
      ∀ {w x y z : M × N}, (c.prod d.toSetoid) w x(c.prod d.toSetoid) y zc.toSetoid (w + y).1 (x + z).1 d.toSetoid (w + y).2 (x + z).2
      def Con.pi {ι : Type u_4} {f : ιType u_5} [(i : ι) → Mul (f i)] (C : (i : ι) → Con (f i)) :
      Con ((i : ι) → f i)

      The product of an indexed collection of congruence relations.

      Equations
      • Con.pi C = { toSetoid := piSetoid, mul' := }
      Instances For
        def AddCon.pi {ι : Type u_4} {f : ιType u_5} [(i : ι) → Add (f i)] (C : (i : ι) → AddCon (f i)) :
        AddCon ((i : ι) → f i)

        The product of an indexed collection of additive congruence relations.

        Equations
        • AddCon.pi C = { toSetoid := piSetoid, add' := }
        Instances For
          theorem AddCon.pi.proof_1 {ι : Type u_1} {f : ιType u_2} [(i : ι) → Add (f i)] (C : (i : ι) → AddCon (f i)) :
          ∀ {w x y z : (i : ι) → f i}, piSetoid w xpiSetoid y z∀ (i : ι), (C i) (w i + y i) (x i + z i)
          def Con.congr {M : Type u_1} [Mul M] {c : Con M} {d : Con M} (h : c = d) :
          c.Quotient ≃* d.Quotient

          Makes an isomorphism of quotients by two congruence relations, given that the relations are equal.

          Equations
          Instances For
            theorem AddCon.congr.proof_1 {M : Type u_1} [Add M] {c : AddCon M} {d : AddCon M} (h : c = d) (x : M) (y : M) :
            c x y d x y
            def AddCon.congr {M : Type u_1} [Add M] {c : AddCon M} {d : AddCon M} (h : c = d) :
            c.Quotient ≃+ d.Quotient

            Makes an additive isomorphism of quotients by two additive congruence relations, given that the relations are equal.

            Equations
            Instances For
              theorem AddCon.congr.proof_2 {M : Type u_1} [Add M] {c : AddCon M} {d : AddCon M} (h : c = d) (x : c.Quotient) (y : c.Quotient) :
              (Quotient.congr (Equiv.refl M) ).toFun (x + y) = (Quotient.congr (Equiv.refl M) ).toFun x + (Quotient.congr (Equiv.refl M) ).toFun y
              def Con.submonoid {M : Type u_1} [MulOneClass M] (c : Con M) :

              The submonoid of M × M defined by a congruence relation on a monoid M.

              Equations
              • c = { carrier := {x : M × M | c x.1 x.2}, mul_mem' := , one_mem' := }
              Instances For
                def AddCon.addSubmonoid {M : Type u_1} [AddZeroClass M] (c : AddCon M) :

                The AddSubmonoid of M × M defined by an additive congruence relation on an AddMonoid M.

                Equations
                • c = { carrier := {x : M × M | c x.1 x.2}, add_mem' := , zero_mem' := }
                Instances For
                  theorem AddCon.addSubmonoid.proof_1 {M : Type u_1} [AddZeroClass M] (c : AddCon M) :
                  ∀ {a b : M × M}, c a.1 a.2c b.1 b.2c (a.1 + b.1) (a.2 + b.2)
                  theorem AddCon.addSubmonoid.proof_2 {M : Type u_1} [AddZeroClass M] (c : AddCon M) :
                  c.toSetoid 0 0
                  def Con.ofSubmonoid {M : Type u_1} [MulOneClass M] (N : Submonoid (M × M)) (H : Equivalence fun (x y : M) => (x, y) N) :
                  Con M

                  The congruence relation on a monoid M from a submonoid of M × M for which membership is an equivalence relation.

                  Equations
                  Instances For
                    def AddCon.ofAddSubmonoid {M : Type u_1} [AddZeroClass M] (N : AddSubmonoid (M × M)) (H : Equivalence fun (x y : M) => (x, y) N) :

                    The additive congruence relation on an AddMonoid M from an AddSubmonoid of M × M for which membership is an equivalence relation.

                    Equations
                    Instances For
                      theorem AddCon.ofAddSubmonoid.proof_1 {M : Type u_1} [AddZeroClass M] (N : AddSubmonoid (M × M)) :
                      ∀ {w x y z : M}, (w, x) N(y, z) N(w, x) + (y, z) N
                      instance Con.toSubmonoid {M : Type u_1} [MulOneClass M] :
                      Coe (Con M) (Submonoid (M × M))

                      Coercion from a congruence relation c on a monoid M to the submonoid of M × M whose elements are (x, y) such that x is related to y by c.

                      Equations
                      • Con.toSubmonoid = { coe := fun (c : Con M) => c }
                      instance AddCon.toAddSubmonoid {M : Type u_1} [AddZeroClass M] :

                      Coercion from a congruence relation c on an AddMonoid M to the AddSubmonoid of M × M whose elements are (x, y) such that x is related to y by c.

                      Equations
                      • AddCon.toAddSubmonoid = { coe := fun (c : AddCon M) => c }
                      theorem Con.mem_coe {M : Type u_1} [MulOneClass M] {c : Con M} {x : M} {y : M} :
                      (x, y) c (x, y) c
                      theorem AddCon.mem_coe {M : Type u_1} [AddZeroClass M] {c : AddCon M} {x : M} {y : M} :
                      (x, y) c (x, y) c
                      theorem Con.to_submonoid_inj {M : Type u_1} [MulOneClass M] (c : Con M) (d : Con M) (H : c = d) :
                      c = d
                      theorem AddCon.to_addSubmonoid_inj {M : Type u_1} [AddZeroClass M] (c : AddCon M) (d : AddCon M) (H : c = d) :
                      c = d
                      theorem Con.le_iff {M : Type u_1} [MulOneClass M] {c : Con M} {d : Con M} :
                      c d c d
                      theorem AddCon.le_iff {M : Type u_1} [AddZeroClass M] {c : AddCon M} {d : AddCon M} :
                      c d c d
                      @[simp]
                      theorem Con.mrange_mk' {M : Type u_1} [MulOneClass M] {c : Con M} :
                      @[simp]
                      theorem AddCon.mrange_mk' {M : Type u_1} [AddZeroClass M] {c : AddCon M} :
                      theorem Con.lift_range {M : Type u_1} {P : Type u_3} [MulOneClass M] [MulOneClass P] {c : Con M} {f : M →* P} (H : c Con.ker f) :

                      Given a congruence relation c on a monoid and a homomorphism f constant on c's equivalence classes, f has the same image as the homomorphism that f induces on the quotient.

                      theorem AddCon.lift_range {M : Type u_1} {P : Type u_3} [AddZeroClass M] [AddZeroClass P] {c : AddCon M} {f : M →+ P} (H : c AddCon.ker f) :

                      Given an additive congruence relation c on an AddMonoid and a homomorphism f constant on c's equivalence classes, f has the same image as the homomorphism that f induces on the quotient.

                      @[simp]

                      Given a monoid homomorphism f, the induced homomorphism on the quotient by f's kernel has the same image as f.

                      @[simp]

                      Given an AddMonoid homomorphism f, the induced homomorphism on the quotient by f's kernel has the same image as f.

                      noncomputable def Con.quotientKerEquivRange {M : Type u_1} {P : Type u_3} [MulOneClass M] [MulOneClass P] (f : M →* P) :
                      (Con.ker f).Quotient ≃* (MonoidHom.mrange f)

                      The first isomorphism theorem for monoids.

                      Equations
                      Instances For
                        theorem AddCon.quotientKerEquivRange.proof_1 {M : Type u_2} {P : Type u_1} [AddZeroClass M] [AddZeroClass P] (f : M →+ P) :
                        AddMonoidHomClass ((AddCon.ker f).Quotient →+ P) (AddCon.ker f).Quotient P
                        theorem AddCon.quotientKerEquivRange.proof_3 {M : Type u_1} {P : Type u_2} [AddZeroClass M] [AddZeroClass P] (f : M →+ P) (a : (AddCon.ker f).Quotient) (b : (AddCon.ker f).Quotient) :
                        ((AddEquiv.addSubmonoidCongr ).toAddMonoidHom.comp (AddCon.kerLift f).mrangeRestrict) (a + b) = ((AddEquiv.addSubmonoidCongr ).toAddMonoidHom.comp (AddCon.kerLift f).mrangeRestrict) a + ((AddEquiv.addSubmonoidCongr ).toAddMonoidHom.comp (AddCon.kerLift f).mrangeRestrict) b
                        noncomputable def AddCon.quotientKerEquivRange {M : Type u_1} {P : Type u_3} [AddZeroClass M] [AddZeroClass P] (f : M →+ P) :
                        (AddCon.ker f).Quotient ≃+ (AddMonoidHom.mrange f)

                        The first isomorphism theorem for AddMonoids.

                        Equations
                        Instances For
                          theorem AddCon.quotientKerEquivRange.proof_2 {M : Type u_1} {P : Type u_2} [AddZeroClass M] [AddZeroClass P] (f : M →+ P) :
                          Function.Bijective ((AddEquiv.addSubmonoidCongr ).toEquiv (AddCon.kerLift f).mrangeRestrict)
                          def Con.quotientKerEquivOfRightInverse {M : Type u_1} {P : Type u_3} [MulOneClass M] [MulOneClass P] (f : M →* P) (g : PM) (hf : Function.RightInverse g f) :
                          (Con.ker f).Quotient ≃* P

                          The first isomorphism theorem for monoids in the case of a homomorphism with right inverse.

                          Equations
                          Instances For
                            def AddCon.quotientKerEquivOfRightInverse {M : Type u_1} {P : Type u_3} [AddZeroClass M] [AddZeroClass P] (f : M →+ P) (g : PM) (hf : Function.RightInverse g f) :
                            (AddCon.ker f).Quotient ≃+ P

                            The first isomorphism theorem for AddMonoids in the case of a homomorphism with right inverse.

                            Equations
                            Instances For
                              theorem AddCon.quotientKerEquivOfRightInverse.proof_1 {M : Type u_1} {P : Type u_2} [AddZeroClass M] [AddZeroClass P] (f : M →+ P) (g : PM) (hf : Function.RightInverse g f) (x : (AddCon.ker f).Quotient) :
                              (AddCon.toQuotient g) ((AddCon.kerLift f) x) = x
                              theorem AddCon.quotientKerEquivOfRightInverse.proof_2 {M : Type u_2} {P : Type u_1} [AddZeroClass M] [AddZeroClass P] (f : M →+ P) (g : PM) (hf : Function.RightInverse g f) (x : P) :
                              (AddCon.kerLift f) ((AddCon.toQuotient g) x) = x
                              theorem AddCon.quotientKerEquivOfRightInverse.proof_3 {M : Type u_1} {P : Type u_2} [AddZeroClass M] [AddZeroClass P] (f : M →+ P) (x : (AddCon.ker f).Quotient) (y : (AddCon.ker f).Quotient) :
                              (↑(AddCon.kerLift f)).toFun (x + y) = (↑(AddCon.kerLift f)).toFun x + (↑(AddCon.kerLift f)).toFun y
                              @[simp]
                              theorem AddCon.quotientKerEquivOfRightInverse_apply {M : Type u_1} {P : Type u_3} [AddZeroClass M] [AddZeroClass P] (f : M →+ P) (g : PM) (hf : Function.RightInverse g f) (a : (AddCon.ker f).Quotient) :
                              @[simp]
                              theorem AddCon.quotientKerEquivOfRightInverse_symm_apply {M : Type u_1} {P : Type u_3} [AddZeroClass M] [AddZeroClass P] (f : M →+ P) (g : PM) (hf : Function.RightInverse g f) :
                              ∀ (a : P), (AddCon.quotientKerEquivOfRightInverse f g hf).symm a = (AddCon.toQuotient g) a
                              @[simp]
                              theorem Con.quotientKerEquivOfRightInverse_symm_apply {M : Type u_1} {P : Type u_3} [MulOneClass M] [MulOneClass P] (f : M →* P) (g : PM) (hf : Function.RightInverse g f) :
                              ∀ (a : P), (Con.quotientKerEquivOfRightInverse f g hf).symm a = (Con.toQuotient g) a
                              @[simp]
                              theorem Con.quotientKerEquivOfRightInverse_apply {M : Type u_1} {P : Type u_3} [MulOneClass M] [MulOneClass P] (f : M →* P) (g : PM) (hf : Function.RightInverse g f) (a : (Con.ker f).Quotient) :
                              noncomputable def Con.quotientKerEquivOfSurjective {M : Type u_1} {P : Type u_3} [MulOneClass M] [MulOneClass P] (f : M →* P) (hf : Function.Surjective f) :
                              (Con.ker f).Quotient ≃* P

                              The first isomorphism theorem for Monoids in the case of a surjective homomorphism.

                              For a computable version, see Con.quotientKerEquivOfRightInverse.

                              Equations
                              Instances For
                                noncomputable def AddCon.quotientKerEquivOfSurjective {M : Type u_1} {P : Type u_3} [AddZeroClass M] [AddZeroClass P] (f : M →+ P) (hf : Function.Surjective f) :
                                (AddCon.ker f).Quotient ≃+ P

                                The first isomorphism theorem for AddMonoids in the case of a surjective homomorphism.

                                For a computable version, see AddCon.quotientKerEquivOfRightInverse.

                                Equations
                                Instances For
                                  noncomputable def Con.comapQuotientEquiv {M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (c : Con M) (f : N →* M) :
                                  (Con.comap f c).Quotient ≃* (MonoidHom.mrange (c.mk'.comp f))

                                  The second isomorphism theorem for monoids.

                                  Equations
                                  Instances For
                                    theorem AddCon.comapQuotientEquiv.proof_1 {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (c : AddCon M) :
                                    AddMonoidHomClass (N →+ c.Quotient) N c.Quotient
                                    noncomputable def AddCon.comapQuotientEquiv {M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (c : AddCon M) (f : N →+ M) :
                                    (AddCon.comap f c).Quotient ≃+ (AddMonoidHom.mrange (c.mk'.comp f))

                                    The second isomorphism theorem for AddMonoids.

                                    Equations
                                    Instances For
                                      def Con.quotientQuotientEquivQuotient {M : Type u_1} [MulOneClass M] (c : Con M) (d : Con M) (h : c d) :
                                      (Con.ker (c.map d h)).Quotient ≃* d.Quotient

                                      The third isomorphism theorem for monoids.

                                      Equations
                                      • c.quotientQuotientEquivQuotient d h = { toEquiv := c.quotientQuotientEquivQuotient d.toSetoid h, map_mul' := }
                                      Instances For
                                        theorem AddCon.quotientQuotientEquivQuotient.proof_1 {M : Type u_1} [AddZeroClass M] (c : AddCon M) (d : AddCon M) (h : c d) (x : (AddCon.ker (c.map d h)).Quotient) (y : (AddCon.ker (c.map d h)).Quotient) :
                                        (c.quotientQuotientEquivQuotient d.toSetoid h).toFun (x + y) = (c.quotientQuotientEquivQuotient d.toSetoid h).toFun x + (c.quotientQuotientEquivQuotient d.toSetoid h).toFun y
                                        def AddCon.quotientQuotientEquivQuotient {M : Type u_1} [AddZeroClass M] (c : AddCon M) (d : AddCon M) (h : c d) :
                                        (AddCon.ker (c.map d h)).Quotient ≃+ d.Quotient

                                        The third isomorphism theorem for AddMonoids.

                                        Equations
                                        • c.quotientQuotientEquivQuotient d h = { toEquiv := c.quotientQuotientEquivQuotient d.toSetoid h, map_add' := }
                                        Instances For
                                          theorem Con.smul {α : Type u_4} {M : Type u_5} [MulOneClass M] [SMul α M] [IsScalarTower α M M] (c : Con M) (a : α) {w : M} {x : M} (h : c w x) :
                                          c (a w) (a x)
                                          theorem AddCon.vadd {α : Type u_4} {M : Type u_5} [AddZeroClass M] [VAdd α M] [VAddAssocClass α M M] (c : AddCon M) (a : α) {w : M} {x : M} (h : c w x) :
                                          c (a +ᵥ w) (a +ᵥ x)
                                          instance Con.instSMul {α : Type u_4} {M : Type u_5} [MulOneClass M] [SMul α M] [IsScalarTower α M M] (c : Con M) :
                                          SMul α c.Quotient
                                          Equations
                                          instance AddCon.instVAdd {α : Type u_4} {M : Type u_5} [AddZeroClass M] [VAdd α M] [VAddAssocClass α M M] (c : AddCon M) :
                                          VAdd α c.Quotient
                                          Equations
                                          theorem Con.coe_smul {α : Type u_4} {M : Type u_5} [MulOneClass M] [SMul α M] [IsScalarTower α M M] (c : Con M) (a : α) (x : M) :
                                          (a x) = a x
                                          theorem AddCon.coe_vadd {α : Type u_4} {M : Type u_5} [AddZeroClass M] [VAdd α M] [VAddAssocClass α M M] (c : AddCon M) (a : α) (x : M) :
                                          (a +ᵥ x) = a +ᵥ x
                                          instance Con.mulAction {α : Type u_4} {M : Type u_5} [Monoid α] [MulOneClass M] [MulAction α M] [IsScalarTower α M M] (c : Con M) :
                                          MulAction α c.Quotient
                                          Equations
                                          instance AddCon.addAction {α : Type u_4} {M : Type u_5} [AddMonoid α] [AddZeroClass M] [AddAction α M] [VAddAssocClass α M M] (c : AddCon M) :
                                          AddAction α c.Quotient
                                          Equations
                                          theorem AddCon.addAction.proof_2 {α : Type u_2} {M : Type u_1} [AddMonoid α] [AddZeroClass M] [AddAction α M] [VAddAssocClass α M M] (c : AddCon M) :
                                          ∀ (x x_1 : α) (q : Quotient c.toSetoid), x + x_1 +ᵥ q = x +ᵥ (x_1 +ᵥ q)
                                          theorem AddCon.addAction.proof_1 {α : Type u_2} {M : Type u_1} [AddMonoid α] [AddZeroClass M] [AddAction α M] [VAddAssocClass α M M] (c : AddCon M) (q : Quotient c.toSetoid) :
                                          0 +ᵥ q = q
                                          instance Con.mulDistribMulAction {α : Type u_4} {M : Type u_5} [Monoid α] [Monoid M] [MulDistribMulAction α M] [IsScalarTower α M M] (c : Con M) :
                                          MulDistribMulAction α c.Quotient
                                          Equations