The left/right unitor equivalences 1 × C ≌ C
and C × 1 ≌ C
. #
The left unitor functor 1 × C ⥤ C
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.prod.leftUnitor_obj
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(X : CategoryTheory.Discrete PUnit.{w + 1} × C)
:
(CategoryTheory.prod.leftUnitor C).obj X = X.2
@[simp]
theorem
CategoryTheory.prod.leftUnitor_map
(C : Type u)
[CategoryTheory.Category.{v, u} C]
:
∀ {X Y : CategoryTheory.Discrete PUnit.{w + 1} × C} (f : X ⟶ Y), (CategoryTheory.prod.leftUnitor C).map f = f.2
The right unitor functor C × 1 ⥤ C
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.prod.rightUnitor_map
(C : Type u)
[CategoryTheory.Category.{v, u} C]
:
∀ {X Y : C × CategoryTheory.Discrete PUnit.{w + 1} } (f : X ⟶ Y), (CategoryTheory.prod.rightUnitor C).map f = f.1
@[simp]
theorem
CategoryTheory.prod.rightUnitor_obj
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(X : C × CategoryTheory.Discrete PUnit.{w + 1} )
:
(CategoryTheory.prod.rightUnitor C).obj X = X.1
The left inverse unitor C ⥤ 1 × C
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.prod.leftInverseUnitor_obj
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(X : C)
:
(CategoryTheory.prod.leftInverseUnitor C).obj X = ({ as := PUnit.unit }, X)
@[simp]
theorem
CategoryTheory.prod.leftInverseUnitor_map
(C : Type u)
[CategoryTheory.Category.{v, u} C]
:
∀ {X Y : C} (f : X ⟶ Y),
(CategoryTheory.prod.leftInverseUnitor C).map f = (CategoryTheory.CategoryStruct.id ((fun (X : C) => ({ as := PUnit.unit }, X)) X).1, f)
The right inverse unitor C ⥤ C × 1
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.prod.rightInverseUnitor_obj
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(X : C)
:
(CategoryTheory.prod.rightInverseUnitor C).obj X = (X, { as := PUnit.unit })
@[simp]
theorem
CategoryTheory.prod.rightInverseUnitor_map
(C : Type u)
[CategoryTheory.Category.{v, u} C]
:
∀ {X Y : C} (f : X ⟶ Y),
(CategoryTheory.prod.rightInverseUnitor C).map f = (f, CategoryTheory.CategoryStruct.id ((fun (X : C) => (X, { as := PUnit.unit })) X).2)
The equivalence of categories expressing left unity of products of categories.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.prod.leftUnitorEquivalence_counitIso
(C : Type u)
[CategoryTheory.Category.{v, u} C]
:
(CategoryTheory.prod.leftUnitorEquivalence C).counitIso = CategoryTheory.Iso.refl ((CategoryTheory.prod.leftInverseUnitor C).comp (CategoryTheory.prod.leftUnitor C))
@[simp]
@[simp]
theorem
CategoryTheory.prod.leftUnitorEquivalence_functor
(C : Type u)
[CategoryTheory.Category.{v, u} C]
:
@[simp]
The equivalence of categories expressing right unity of products of categories.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
theorem
CategoryTheory.prod.rightUnitorEquivalence_counitIso
(C : Type u)
[CategoryTheory.Category.{v, u} C]
:
@[simp]
@[simp]
theorem
CategoryTheory.prod.rightUnitorEquivalence_functor
(C : Type u)
[CategoryTheory.Category.{v, u} C]
:
instance
CategoryTheory.prod.leftUnitor_isEquivalence
(C : Type u)
[CategoryTheory.Category.{v, u} C]
:
(CategoryTheory.prod.leftUnitor C).IsEquivalence
Equations
- ⋯ = ⋯
instance
CategoryTheory.prod.rightUnitor_isEquivalence
(C : Type u)
[CategoryTheory.Category.{v, u} C]
:
(CategoryTheory.prod.rightUnitor C).IsEquivalence
Equations
- ⋯ = ⋯