Documentation

Mathlib.CategoryTheory.Iso

Isomorphisms #

This file defines isomorphisms between objects of a category.

Main definitions #

Notations #

Tags #

category, category theory, isomorphism

structure CategoryTheory.Iso {C : Type u} [CategoryTheory.Category.{v, u} C] (X : C) (Y : C) :

An isomorphism (a.k.a. an invertible morphism) between two objects of a category. The inverse morphism is bundled.

See also CategoryTheory.Core for the category with the same objects and isomorphisms playing the role of morphisms.

See https://stacks.math.columbia.edu/tag/0017.

Instances For
    @[simp]

    Composition of the two directions of an isomorphism is the identity on the source.

    @[simp]

    Composition of the two directions of an isomorphism in reverse order is the identity on the target.

    @[simp]
    theorem CategoryTheory.Iso.inv_hom_id_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (self : X Y) {Z : C} (h : Y Z) :
    @[simp]
    theorem CategoryTheory.Iso.hom_inv_id_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (self : X Y) {Z : C} (h : X Z) :
    theorem CategoryTheory.Iso.ext {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} ⦃α : X Y ⦃β : X Y (w : α.hom = β.hom) :
    α = β
    def CategoryTheory.Iso.symm {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (I : X Y) :
    Y X

    Inverse isomorphism.

    Equations
    • I.symm = { hom := I.inv, inv := I.hom, hom_inv_id := , inv_hom_id := }
    Instances For
      @[simp]
      theorem CategoryTheory.Iso.symm_hom {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) :
      α.symm.hom = α.inv
      @[simp]
      theorem CategoryTheory.Iso.symm_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) :
      α.symm.inv = α.hom
      @[simp]
      theorem CategoryTheory.Iso.symm_mk {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (hom : X Y) (inv : Y X) (hom_inv_id : CategoryTheory.CategoryStruct.comp hom inv = CategoryTheory.CategoryStruct.id X) (inv_hom_id : CategoryTheory.CategoryStruct.comp inv hom = CategoryTheory.CategoryStruct.id Y) :
      { hom := hom, inv := inv, hom_inv_id := hom_inv_id, inv_hom_id := inv_hom_id }.symm = { hom := inv, inv := hom, hom_inv_id := inv_hom_id, inv_hom_id := hom_inv_id }
      @[simp]
      theorem CategoryTheory.Iso.symm_symm_eq {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) :
      α.symm.symm = α
      @[simp]
      theorem CategoryTheory.Iso.symm_eq_iff {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {α : X Y} {β : X Y} :
      α.symm = β.symm α = β

      Identity isomorphism.

      Equations
      Instances For
        Equations
        def CategoryTheory.Iso.trans {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) (β : Y Z) :
        X Z

        Composition of two isomorphisms

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Iso.trans_hom {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) (β : Y Z) :
          (α ≪≫ β).hom = CategoryTheory.CategoryStruct.comp α.hom β.hom
          @[simp]
          theorem CategoryTheory.Iso.trans_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) (β : Y Z) :
          (α ≪≫ β).inv = CategoryTheory.CategoryStruct.comp β.inv α.inv
          instance CategoryTheory.Iso.instTransIso {C : Type u} [CategoryTheory.Category.{v, u} C] :
          Trans (fun (x1 x2 : C) => x1 x2) (fun (x1 x2 : C) => x1 x2) fun (x1 x2 : C) => x1 x2
          Equations
          • CategoryTheory.Iso.instTransIso = { trans := fun {a b c : C} => CategoryTheory.Iso.trans }
          @[simp]
          theorem CategoryTheory.Iso.instTransIso_trans {C : Type u} [CategoryTheory.Category.{v, u} C] :
          ∀ {a b c : C} (α : a b) (β : b c), Trans.trans α β = α ≪≫ β
          @[simp]
          theorem CategoryTheory.Iso.trans_mk {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (hom : X Y) (inv : Y X) (hom_inv_id : CategoryTheory.CategoryStruct.comp hom inv = CategoryTheory.CategoryStruct.id X) (inv_hom_id : CategoryTheory.CategoryStruct.comp inv hom = CategoryTheory.CategoryStruct.id Y) (hom' : Y Z) (inv' : Z Y) (hom_inv_id' : CategoryTheory.CategoryStruct.comp hom' inv' = CategoryTheory.CategoryStruct.id Y) (inv_hom_id' : CategoryTheory.CategoryStruct.comp inv' hom' = CategoryTheory.CategoryStruct.id Z) (hom_inv_id'' : CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp hom hom') (CategoryTheory.CategoryStruct.comp inv' inv) = CategoryTheory.CategoryStruct.id X) (inv_hom_id'' : CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp inv' inv) (CategoryTheory.CategoryStruct.comp hom hom') = CategoryTheory.CategoryStruct.id Z) :
          { hom := hom, inv := inv, hom_inv_id := hom_inv_id, inv_hom_id := inv_hom_id } ≪≫ { hom := hom', inv := inv', hom_inv_id := hom_inv_id', inv_hom_id := inv_hom_id' } = { hom := CategoryTheory.CategoryStruct.comp hom hom', inv := CategoryTheory.CategoryStruct.comp inv' inv, hom_inv_id := hom_inv_id'', inv_hom_id := inv_hom_id'' }
          @[simp]
          theorem CategoryTheory.Iso.trans_symm {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) (β : Y Z) :
          (α ≪≫ β).symm = β.symm ≪≫ α.symm
          @[simp]
          theorem CategoryTheory.Iso.trans_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {Z' : C} (α : X Y) (β : Y Z) (γ : Z Z') :
          (α ≪≫ β) ≪≫ γ = α ≪≫ β ≪≫ γ
          @[simp]
          @[simp]
          @[simp]
          theorem CategoryTheory.Iso.symm_self_id {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) :
          @[simp]
          theorem CategoryTheory.Iso.self_symm_id {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) :
          @[simp]
          theorem CategoryTheory.Iso.symm_self_id_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) (β : Y Z) :
          α.symm ≪≫ α ≪≫ β = β
          @[simp]
          theorem CategoryTheory.Iso.self_symm_id_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) (β : X Z) :
          α ≪≫ α.symm ≪≫ β = β
          theorem CategoryTheory.Iso.inv_comp_eq {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) {f : X Z} {g : Y Z} :
          theorem CategoryTheory.Iso.eq_inv_comp {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) {f : X Z} {g : Y Z} :
          theorem CategoryTheory.Iso.comp_inv_eq {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) {f : Z Y} {g : Z X} :
          theorem CategoryTheory.Iso.eq_comp_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (α : X Y) {f : Z Y} {g : Z X} :
          theorem CategoryTheory.Iso.inv_eq_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (f : X Y) (g : X Y) :
          f.inv = g.inv f.hom = g.hom
          theorem CategoryTheory.Iso.hom_eq_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) (β : Y X) :
          α.hom = β.inv β.hom = α.inv
          def CategoryTheory.Iso.homToEquiv {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) {Z : C} :
          (Z X) (Z Y)

          The bijection (Z ⟶ X) ≃ (Z ⟶ Y) induced by α : X ≅ Y.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Iso.homToEquiv_symm_apply {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) {Z : C} (g : Z Y) :
            α.homToEquiv.symm g = CategoryTheory.CategoryStruct.comp g α.inv
            @[simp]
            theorem CategoryTheory.Iso.homToEquiv_apply {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) {Z : C} (f : Z X) :
            α.homToEquiv f = CategoryTheory.CategoryStruct.comp f α.hom
            def CategoryTheory.Iso.homFromEquiv {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) {Z : C} :
            (X Z) (Y Z)

            The bijection (X ⟶ Z) ≃ (Y ⟶ Z) induced by α : X ≅ Y.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem CategoryTheory.Iso.homFromEquiv_symm_apply {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) {Z : C} (g : Y Z) :
              α.homFromEquiv.symm g = CategoryTheory.CategoryStruct.comp α.hom g
              @[simp]
              theorem CategoryTheory.Iso.homFromEquiv_apply {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) {Z : C} (f : X Z) :
              α.homFromEquiv f = CategoryTheory.CategoryStruct.comp α.inv f
              class CategoryTheory.IsIso {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (f : X Y) :

              IsIso typeclass expressing that a morphism is invertible.

              Instances
                noncomputable def CategoryTheory.inv {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (f : X Y) [I : CategoryTheory.IsIso f] :
                Y X

                The inverse of a morphism f when we have [IsIso f].

                Equations
                Instances For
                  noncomputable def CategoryTheory.asIso {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (f : X Y) [CategoryTheory.IsIso f] :
                  X Y

                  Reinterpret a morphism f with an IsIso f instance as an Iso.

                  Equations
                  Instances For
                    @[simp]
                    theorem CategoryTheory.asIso_hom {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (f : X Y) :
                    @[simp]
                    @[instance 100]
                    Equations
                    • =
                    @[instance 100]
                    Equations
                    • =
                    @[deprecated CategoryTheory.Iso.isIso_hom]
                    theorem CategoryTheory.IsIso.of_iso {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (e : X Y) :

                    Alias of CategoryTheory.Iso.isIso_hom.

                    @[deprecated CategoryTheory.Iso.isIso_inv]

                    Alias of CategoryTheory.Iso.isIso_inv.

                    @[instance 900]
                    Equations
                    • =

                    The composition of isomorphisms is an isomorphism. Here the arguments of type IsIso are explicit, to make this easier to use with the refine tactic, for instance.

                    @[simp]
                    theorem CategoryTheory.IsIso.Iso.inv_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (f : X Y) :
                    CategoryTheory.inv f.inv = f.hom
                    @[simp]
                    theorem CategoryTheory.IsIso.Iso.inv_hom {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (f : X Y) :
                    CategoryTheory.inv f.hom = f.inv
                    theorem CategoryTheory.Iso.inv_ext {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {f : X Y} {g : Y X} (hom_inv_id : CategoryTheory.CategoryStruct.comp f.hom g = CategoryTheory.CategoryStruct.id X) :
                    f.inv = g
                    theorem CategoryTheory.Iso.inv_ext' {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {f : X Y} {g : Y X} (hom_inv_id : CategoryTheory.CategoryStruct.comp f.hom g = CategoryTheory.CategoryStruct.id X) :
                    g = f.inv

                    All these cancellation lemmas can be solved by simp [cancel_mono] (or simp [cancel_epi]), but with the current design cancel_mono is not a good simp lemma, because it generates a typeclass search.

                    When we can see syntactically that a morphism is a mono or an epi because it came from an isomorphism, it's fine to do the cancellation via simp.

                    In the longer term, it might be worth exploring making mono and epi structures, rather than typeclasses, with coercions back to X ⟶ Y. Presumably we could write X ↪ Y and X ↠ Y.

                    @[simp]
                    theorem CategoryTheory.Iso.cancel_iso_hom_left {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (f : X Y) (g : Y Z) (g' : Y Z) :
                    @[simp]
                    theorem CategoryTheory.Iso.cancel_iso_inv_left {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (f : Y X) (g : Y Z) (g' : Y Z) :
                    @[simp]
                    theorem CategoryTheory.Iso.cancel_iso_hom_right {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (f : X Y) (f' : X Y) (g : Y Z) :
                    @[simp]
                    theorem CategoryTheory.Iso.cancel_iso_inv_right {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (f : X Y) (f' : X Y) (g : Z Y) :
                    @[simp]
                    theorem CategoryTheory.Iso.map_hom_inv_id_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u_1} [CategoryTheory.Category.{u_2, u_1} D] {X : C} {Y : C} (e : X Y) (F : CategoryTheory.Functor C D) {Z : D} (h : F.obj X Z) :
                    @[simp]
                    theorem CategoryTheory.Iso.map_inv_hom_id_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u_1} [CategoryTheory.Category.{u_2, u_1} D] {X : C} {Y : C} (e : X Y) (F : CategoryTheory.Functor C D) {Z : D} (h : F.obj Y Z) :
                    def CategoryTheory.Functor.mapIso {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {X : C} {Y : C} (i : X Y) :
                    F.obj X F.obj Y

                    A functor F : C ⥤ D sends isomorphisms i : X ≅ Y to isomorphisms F.obj X ≅ F.obj Y

                    Equations
                    • F.mapIso i = { hom := F.map i.hom, inv := F.map i.inv, hom_inv_id := , inv_hom_id := }
                    Instances For
                      @[simp]
                      theorem CategoryTheory.Functor.mapIso_hom {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {X : C} {Y : C} (i : X Y) :
                      (F.mapIso i).hom = F.map i.hom
                      @[simp]
                      theorem CategoryTheory.Functor.mapIso_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {X : C} {Y : C} (i : X Y) :
                      (F.mapIso i).inv = F.map i.inv
                      @[simp]
                      theorem CategoryTheory.Functor.mapIso_symm {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {X : C} {Y : C} (i : X Y) :
                      F.mapIso i.symm = (F.mapIso i).symm
                      @[simp]
                      theorem CategoryTheory.Functor.mapIso_trans {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {X : C} {Y : C} {Z : C} (i : X Y) (j : Y Z) :
                      F.mapIso (i ≪≫ j) = F.mapIso i ≪≫ F.mapIso j