Documentation
SSA
.
Projects
.
InstCombine
.
HackersDelight
.
ch2_1DeMorgan
Search
Google site search
return to top
source
Imports
Init
SSA.Projects.InstCombine.TacticAuto
Imported by
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
not_and_eq_not_or_not
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
not_or_eq_not_and_not
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
not_add_one_eq_not_sub_one
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
not_sub_one_eq_not_add_one
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
not_neg_eq_sub_one
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
not_xor_eq_not_xor
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
q_not_xor
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
not_add_eq_not_sub
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
not_sub_eq_not_add
source
theorem
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
not_and_eq_not_or_not
{w :
ℕ
}
{x :
BitVec
w
}
{y :
BitVec
w
}
:
~~~
(
x
&&&
y
)
=
~~~
x
|||
~~~
y
source
theorem
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
not_or_eq_not_and_not
{w :
ℕ
}
{x :
BitVec
w
}
{y :
BitVec
w
}
:
~~~
(
x
|||
y
)
=
~~~
x
&&&
~~~
y
source
theorem
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
not_add_one_eq_not_sub_one
{w :
ℕ
}
{x :
BitVec
w
}
:
~~~
(
x
+
1
)
=
~~~
x
-
1
source
theorem
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
not_sub_one_eq_not_add_one
{w :
ℕ
}
{x :
BitVec
w
}
:
~~~
(
x
-
1
)
=
~~~
x
+
1
source
theorem
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
not_neg_eq_sub_one
{w :
ℕ
}
{x :
BitVec
w
}
:
~~~
(
-
x
)
=
x
-
1
source
theorem
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
not_xor_eq_not_xor
{w :
ℕ
}
{x :
BitVec
w
}
{y :
BitVec
w
}
:
~~~
(
x
^^^
y
)
=
~~~
x
^^^
y
source
theorem
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
q_not_xor
{w :
ℕ
}
{x :
BitVec
w
}
{y :
BitVec
w
}
:
~~~
(
x
^^^
y
)
=
~~~
x
^^^
y
source
theorem
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
not_add_eq_not_sub
{w :
ℕ
}
{x :
BitVec
w
}
{y :
BitVec
w
}
:
~~~
(
x
+
y
)
=
~~~
x
-
y
source
theorem
HackersDelight
.
Ch2Basics
.
DeMorgansLawsExtended
.
not_sub_eq_not_add
{w :
ℕ
}
{x :
BitVec
w
}
{y :
BitVec
w
}
:
~~~
(
x
-
y
)
=
~~~
x
+
y