Documentation

Mathlib.Topology.Algebra.Module.Star

The star operation, bundled as a continuous star-linear equiv #

def starL (R : Type u_1) {A : Type u_2} [CommSemiring R] [StarRing R] [AddCommMonoid A] [StarAddMonoid A] [Module R A] [StarModule R A] [TopologicalSpace A] [ContinuousStar A] :

If A is a topological module over a commutative R with compatible actions, then star is a continuous semilinear equivalence.

Equations
Instances For
    @[simp]
    theorem starL_symm_apply (R : Type u_1) {A : Type u_2} [CommSemiring R] [StarRing R] [AddCommMonoid A] [StarAddMonoid A] [Module R A] [StarModule R A] [TopologicalSpace A] [ContinuousStar A] :
    ∀ (a : A), (starL R).symm a = starAddEquiv.symm a
    @[simp]
    theorem starL_apply (R : Type u_1) {A : Type u_2} [CommSemiring R] [StarRing R] [AddCommMonoid A] [StarAddMonoid A] [Module R A] [StarModule R A] [TopologicalSpace A] [ContinuousStar A] :
    ∀ (a : A), (starL R) a = star a
    def starL' (R : Type u_1) {A : Type u_2} [CommSemiring R] [StarRing R] [TrivialStar R] [AddCommMonoid A] [StarAddMonoid A] [Module R A] [StarModule R A] [TopologicalSpace A] [ContinuousStar A] :
    A ≃L[R] A

    If A is a topological module over a commutative R with trivial star and compatible actions, then star is a continuous linear equivalence.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem starL'_apply (R : Type u_1) {A : Type u_2} [CommSemiring R] [StarRing R] [TrivialStar R] [AddCommMonoid A] [StarAddMonoid A] [Module R A] [StarModule R A] [TopologicalSpace A] [ContinuousStar A] :
      ∀ (a : A), (starL' R) a = star a
      @[simp]
      theorem starL'_symm_apply (R : Type u_1) {A : Type u_2} [CommSemiring R] [StarRing R] [TrivialStar R] [AddCommMonoid A] [StarAddMonoid A] [Module R A] [StarModule R A] [TopologicalSpace A] [ContinuousStar A] :
      ∀ (a : A), (starL' R).symm a = (starL R).symm ({ toFun := id, map_add' := , map_smul' := , invFun := id, left_inv := , right_inv := }.symm a)

      The self-adjoint part of an element of a star module, as a continuous linear map.

      Equations
      Instances For

        The skew-adjoint part of an element of a star module, as a continuous linear map.

        Equations
        Instances For
          @[simp]
          @[simp]

          The decomposition of elements of a star module into their self- and skew-adjoint parts, as a continuous linear equivalence.

          Equations
          Instances For