Documentation

Mathlib.Data.Nat.ModEq

Congruences modulo a natural number #

This file defines the equivalence relation a ≡ b [MOD n] on the natural numbers, and proves basic properties about it such as the Chinese Remainder Theorem modEq_and_modEq_iff_modEq_mul.

Notations #

a ≡ b [MOD n] is notation for nat.ModEq n a b, which is defined to mean a % n = b % n.

Tags #

ModEq, congruence, mod, MOD, modulo

def Nat.ModEq (n : ) (a : ) (b : ) :

Modular equality. n.ModEq a b, or a ≡ b [MOD n], means that a - b is a multiple of n.

Equations
Instances For
    instance Nat.instDecidableModEq {n : } {a : } {b : } :
    Equations
    theorem Nat.ModEq.refl {n : } (a : ) :
    a a [MOD n]
    theorem Nat.ModEq.rfl {n : } {a : } :
    a a [MOD n]
    instance Nat.ModEq.instIsRefl {n : } :
    IsRefl n.ModEq
    Equations
    • =
    theorem Nat.ModEq.symm {n : } {a : } {b : } :
    a b [MOD n]b a [MOD n]
    theorem Nat.ModEq.trans {n : } {a : } {b : } {c : } :
    a b [MOD n]b c [MOD n]a c [MOD n]
    instance Nat.ModEq.instTrans {n : } :
    Trans n.ModEq n.ModEq n.ModEq
    Equations
    • Nat.ModEq.instTrans = { trans := }
    theorem Nat.ModEq.comm {n : } {a : } {b : } :
    a b [MOD n] b a [MOD n]
    theorem Nat.modEq_zero_iff_dvd {n : } {a : } :
    a 0 [MOD n] n a
    theorem Dvd.dvd.modEq_zero_nat {n : } {a : } (h : n a) :
    a 0 [MOD n]
    theorem Dvd.dvd.zero_modEq_nat {n : } {a : } (h : n a) :
    0 a [MOD n]
    theorem Nat.modEq_iff_dvd {n : } {a : } {b : } :
    a b [MOD n] n b - a
    theorem Nat.ModEq.dvd {n : } {a : } {b : } :
    a b [MOD n]n b - a

    Alias of the forward direction of Nat.modEq_iff_dvd.

    theorem Nat.modEq_of_dvd {n : } {a : } {b : } :
    n b - aa b [MOD n]

    Alias of the reverse direction of Nat.modEq_iff_dvd.

    theorem Nat.modEq_iff_dvd' {n : } {a : } {b : } (h : a b) :
    a b [MOD n] n b - a

    A variant of modEq_iff_dvd with Nat divisibility

    theorem Nat.mod_modEq (a : ) (n : ) :
    a % n a [MOD n]
    theorem Nat.ModEq.of_dvd {m : } {n : } {a : } {b : } (d : m n) (h : a b [MOD n]) :
    a b [MOD m]
    theorem Nat.ModEq.mul_left' {n : } {a : } {b : } (c : ) (h : a b [MOD n]) :
    c * a c * b [MOD c * n]
    theorem Nat.ModEq.mul_left {n : } {a : } {b : } (c : ) (h : a b [MOD n]) :
    c * a c * b [MOD n]
    theorem Nat.ModEq.mul_right' {n : } {a : } {b : } (c : ) (h : a b [MOD n]) :
    a * c b * c [MOD n * c]
    theorem Nat.ModEq.mul_right {n : } {a : } {b : } (c : ) (h : a b [MOD n]) :
    a * c b * c [MOD n]
    theorem Nat.ModEq.mul {n : } {a : } {b : } {c : } {d : } (h₁ : a b [MOD n]) (h₂ : c d [MOD n]) :
    a * c b * d [MOD n]
    theorem Nat.ModEq.pow {n : } {a : } {b : } (m : ) (h : a b [MOD n]) :
    a ^ m b ^ m [MOD n]
    theorem Nat.ModEq.add {n : } {a : } {b : } {c : } {d : } (h₁ : a b [MOD n]) (h₂ : c d [MOD n]) :
    a + c b + d [MOD n]
    theorem Nat.ModEq.add_left {n : } {a : } {b : } (c : ) (h : a b [MOD n]) :
    c + a c + b [MOD n]
    theorem Nat.ModEq.add_right {n : } {a : } {b : } (c : ) (h : a b [MOD n]) :
    a + c b + c [MOD n]
    theorem Nat.ModEq.add_left_cancel {n : } {a : } {b : } {c : } {d : } (h₁ : a b [MOD n]) (h₂ : a + c b + d [MOD n]) :
    c d [MOD n]
    theorem Nat.ModEq.add_left_cancel' {n : } {a : } {b : } (c : ) (h : c + a c + b [MOD n]) :
    a b [MOD n]
    theorem Nat.ModEq.add_right_cancel {n : } {a : } {b : } {c : } {d : } (h₁ : c d [MOD n]) (h₂ : a + c b + d [MOD n]) :
    a b [MOD n]
    theorem Nat.ModEq.add_right_cancel' {n : } {a : } {b : } (c : ) (h : a + c b + c [MOD n]) :
    a b [MOD n]
    theorem Nat.ModEq.mul_left_cancel' {a : } {b : } {c : } {m : } (hc : c 0) :
    c * a c * b [MOD c * m]a b [MOD m]

    Cancel left multiplication on both sides of the and in the modulus.

    For cancelling left multiplication in the modulus, see Nat.ModEq.of_mul_left.

    theorem Nat.ModEq.mul_left_cancel_iff' {a : } {b : } {c : } {m : } (hc : c 0) :
    c * a c * b [MOD c * m] a b [MOD m]
    theorem Nat.ModEq.mul_right_cancel' {a : } {b : } {c : } {m : } (hc : c 0) :
    a * c b * c [MOD m * c]a b [MOD m]

    Cancel right multiplication on both sides of the and in the modulus.

    For cancelling right multiplication in the modulus, see Nat.ModEq.of_mul_right.

    theorem Nat.ModEq.mul_right_cancel_iff' {a : } {b : } {c : } {m : } (hc : c 0) :
    a * c b * c [MOD m * c] a b [MOD m]
    theorem Nat.ModEq.of_mul_left {n : } {a : } {b : } (m : ) (h : a b [MOD m * n]) :
    a b [MOD n]

    Cancel left multiplication in the modulus.

    For cancelling left multiplication on both sides of the , see nat.modeq.mul_left_cancel'.

    theorem Nat.ModEq.of_mul_right {n : } {a : } {b : } (m : ) :
    a b [MOD n * m]a b [MOD n]

    Cancel right multiplication in the modulus.

    For cancelling right multiplication on both sides of the , see nat.modeq.mul_right_cancel'.

    theorem Nat.ModEq.of_div {m : } {a : } {b : } {c : } (h : a / c b / c [MOD m / c]) (ha : c a) (ha : c b) (ha : c m) :
    a b [MOD m]
    theorem Nat.modEq_sub {a : } {b : } (h : b a) :
    a b [MOD a - b]
    theorem Nat.modEq_one {a : } {b : } :
    a b [MOD 1]
    @[simp]
    theorem Nat.modEq_zero_iff {a : } {b : } :
    a b [MOD 0] a = b
    @[simp]
    theorem Nat.add_modEq_left {n : } {a : } :
    n + a a [MOD n]
    @[simp]
    theorem Nat.add_modEq_right {n : } {a : } :
    a + n a [MOD n]
    theorem Nat.ModEq.le_of_lt_add {m : } {a : } {b : } (h1 : a b [MOD m]) (h2 : a < b + m) :
    a b
    theorem Nat.ModEq.add_le_of_lt {m : } {a : } {b : } (h1 : a b [MOD m]) (h2 : a < b) :
    a + m b
    theorem Nat.ModEq.dvd_iff {m : } {a : } {b : } {d : } (h : a b [MOD m]) (hdm : d m) :
    d a d b
    theorem Nat.ModEq.gcd_eq {m : } {a : } {b : } (h : a b [MOD m]) :
    a.gcd m = b.gcd m
    theorem Nat.ModEq.eq_of_abs_lt {m : } {a : } {b : } (h : a b [MOD m]) (h2 : |b - a| < m) :
    a = b
    theorem Nat.ModEq.eq_of_lt_of_lt {m : } {a : } {b : } (h : a b [MOD m]) (ha : a < m) (hb : b < m) :
    a = b
    theorem Nat.ModEq.cancel_left_div_gcd {m : } {a : } {b : } {c : } (hm : 0 < m) (h : c * a c * b [MOD m]) :
    a b [MOD m / m.gcd c]

    To cancel a common factor c from a ModEq we must divide the modulus m by gcd m c

    theorem Nat.ModEq.cancel_right_div_gcd {m : } {a : } {b : } {c : } (hm : 0 < m) (h : a * c b * c [MOD m]) :
    a b [MOD m / m.gcd c]

    To cancel a common factor c from a ModEq we must divide the modulus m by gcd m c

    theorem Nat.ModEq.cancel_left_div_gcd' {m : } {a : } {b : } {c : } {d : } (hm : 0 < m) (hcd : c d [MOD m]) (h : c * a d * b [MOD m]) :
    a b [MOD m / m.gcd c]
    theorem Nat.ModEq.cancel_right_div_gcd' {m : } {a : } {b : } {c : } {d : } (hm : 0 < m) (hcd : c d [MOD m]) (h : a * c b * d [MOD m]) :
    a b [MOD m / m.gcd c]
    theorem Nat.ModEq.cancel_left_of_coprime {m : } {a : } {b : } {c : } (hmc : m.gcd c = 1) (h : c * a c * b [MOD m]) :
    a b [MOD m]

    A common factor that's coprime with the modulus can be cancelled from a ModEq

    theorem Nat.ModEq.cancel_right_of_coprime {m : } {a : } {b : } {c : } (hmc : m.gcd c = 1) (h : a * c b * c [MOD m]) :
    a b [MOD m]

    A common factor that's coprime with the modulus can be cancelled from a ModEq

    def Nat.chineseRemainder' {m : } {n : } {a : } {b : } (h : a b [MOD n.gcd m]) :
    { k : // k a [MOD n] k b [MOD m] }

    The natural number less than lcm n m congruent to a mod n and b mod m

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def Nat.chineseRemainder {m : } {n : } (co : n.Coprime m) (a : ) (b : ) :
      { k : // k a [MOD n] k b [MOD m] }

      The natural number less than n*m congruent to a mod n and b mod m

      Equations
      Instances For
        theorem Nat.chineseRemainder'_lt_lcm {m : } {n : } {a : } {b : } (h : a b [MOD n.gcd m]) (hn : n 0) (hm : m 0) :
        (Nat.chineseRemainder' h) < n.lcm m
        theorem Nat.chineseRemainder_lt_mul {m : } {n : } (co : n.Coprime m) (a : ) (b : ) (hn : n 0) (hm : m 0) :
        (Nat.chineseRemainder co a b) < n * m
        theorem Nat.mod_lcm {m : } {n : } {a : } {b : } (hn : a b [MOD n]) (hm : a b [MOD m]) :
        a b [MOD n.lcm m]
        theorem Nat.chineseRemainder_modEq_unique {m : } {n : } (co : n.Coprime m) {a : } {b : } {z : } (hzan : z a [MOD n]) (hzbm : z b [MOD m]) :
        z (Nat.chineseRemainder co a b) [MOD n * m]
        theorem Nat.modEq_and_modEq_iff_modEq_mul {a : } {b : } {m : } {n : } (hmn : m.Coprime n) :
        a b [MOD m] a b [MOD n] a b [MOD m * n]
        theorem Nat.coprime_of_mul_modEq_one (b : ) {a : } {n : } (h : a * b 1 [MOD n]) :
        a.Coprime n
        theorem Nat.add_mod_add_ite (a : ) (b : ) (c : ) :
        ((a + b) % c + if c a % c + b % c then c else 0) = a % c + b % c
        theorem Nat.add_mod_of_add_mod_lt {a : } {b : } {c : } (hc : a % c + b % c < c) :
        (a + b) % c = a % c + b % c
        theorem Nat.add_mod_add_of_le_add_mod {a : } {b : } {c : } (hc : c a % c + b % c) :
        (a + b) % c + c = a % c + b % c
        theorem Nat.add_div {a : } {b : } {c : } (hc0 : 0 < c) :
        (a + b) / c = a / c + b / c + if c a % c + b % c then 1 else 0
        theorem Nat.add_div_eq_of_add_mod_lt {a : } {b : } {c : } (hc : a % c + b % c < c) :
        (a + b) / c = a / c + b / c
        theorem Nat.add_div_of_dvd_right {a : } {b : } {c : } (hca : c a) :
        (a + b) / c = a / c + b / c
        theorem Nat.add_div_of_dvd_left {a : } {b : } {c : } (hca : c b) :
        (a + b) / c = a / c + b / c
        theorem Nat.add_div_eq_of_le_mod_add_mod {a : } {b : } {c : } (hc : c a % c + b % c) (hc0 : 0 < c) :
        (a + b) / c = a / c + b / c + 1
        theorem Nat.add_div_le_add_div (a : ) (b : ) (c : ) :
        a / c + b / c (a + b) / c
        theorem Nat.le_mod_add_mod_of_dvd_add_of_not_dvd {a : } {b : } {c : } (h : c a + b) (ha : ¬c a) :
        c a % c + b % c
        theorem Nat.odd_mul_odd {n : } {m : } :
        n % 2 = 1m % 2 = 1n * m % 2 = 1
        theorem Nat.odd_mul_odd_div_two {m : } {n : } (hm1 : m % 2 = 1) (hn1 : n % 2 = 1) :
        m * n / 2 = m * (n / 2) + m / 2
        theorem Nat.odd_of_mod_four_eq_one {n : } :
        n % 4 = 1n % 2 = 1
        theorem Nat.odd_of_mod_four_eq_three {n : } :
        n % 4 = 3n % 2 = 1
        theorem Nat.odd_mod_four_iff {n : } :
        n % 2 = 1 n % 4 = 1 n % 4 = 3

        A natural number is odd iff it has residue 1 or 3 mod 4

        theorem Nat.mod_eq_of_modEq {a : } {b : } {n : } (h : a b [MOD n]) (hb : b < n) :
        a % n = b