Adjoining top/bottom elements to ordered monoids. #
@[simp]
@[simp]
Equations
- ⋯ = ⋯
Equations
- WithTop.add = { add := Option.map₂ fun (x1 x2 : α) => x1 + x2 }
instance
WithTop.covariantClass_swap_add_le
{α : Type u}
[Add α]
[LE α]
[CovariantClass α α (Function.swap fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 ≤ x2]
:
CovariantClass (WithTop α) (WithTop α) (Function.swap fun (x1 x2 : WithTop α) => x1 + x2) fun (x1 x2 : WithTop α) =>
x1 ≤ x2
Equations
- ⋯ = ⋯
instance
WithTop.contravariantClass_swap_add_lt
{α : Type u}
[Add α]
[LT α]
[ContravariantClass α α (Function.swap fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 < x2]
:
ContravariantClass (WithTop α) (WithTop α) (Function.swap fun (x1 x2 : WithTop α) => x1 + x2) fun (x1 x2 : WithTop α) =>
x1 < x2
Equations
- ⋯ = ⋯
theorem
WithTop.add_le_add_iff_left
{α : Type u}
[Add α]
{a : WithTop α}
{b : WithTop α}
{c : WithTop α}
[LE α]
[CovariantClass α α (fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 ≤ x2]
[ContravariantClass α α (fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 ≤ x2]
(ha : a ≠ ⊤)
:
theorem
WithTop.add_le_add_iff_right
{α : Type u}
[Add α]
{a : WithTop α}
{b : WithTop α}
{c : WithTop α}
[LE α]
[CovariantClass α α (Function.swap fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 ≤ x2]
[ContravariantClass α α (Function.swap fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 ≤ x2]
(ha : a ≠ ⊤)
:
theorem
WithTop.add_lt_add_iff_left
{α : Type u}
[Add α]
{a : WithTop α}
{b : WithTop α}
{c : WithTop α}
[LT α]
[CovariantClass α α (fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 < x2]
[ContravariantClass α α (fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 < x2]
(ha : a ≠ ⊤)
:
theorem
WithTop.add_lt_add_iff_right
{α : Type u}
[Add α]
{a : WithTop α}
{b : WithTop α}
{c : WithTop α}
[LT α]
[CovariantClass α α (Function.swap fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 < x2]
[ContravariantClass α α (Function.swap fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 < x2]
(ha : a ≠ ⊤)
:
theorem
WithTop.add_lt_add_of_le_of_lt
{α : Type u}
[Add α]
{a : WithTop α}
{b : WithTop α}
{c : WithTop α}
{d : WithTop α}
[Preorder α]
[CovariantClass α α (fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 < x2]
[CovariantClass α α (Function.swap fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 ≤ x2]
(ha : a ≠ ⊤)
(hab : a ≤ b)
(hcd : c < d)
:
theorem
WithTop.add_lt_add_of_lt_of_le
{α : Type u}
[Add α]
{a : WithTop α}
{b : WithTop α}
{c : WithTop α}
{d : WithTop α}
[Preorder α]
[CovariantClass α α (fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 ≤ x2]
[CovariantClass α α (Function.swap fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 < x2]
(hc : c ≠ ⊤)
(hab : a < b)
(hcd : c ≤ d)
:
@[simp]
theorem
WithTop.map_add
{α : Type u}
{β : Type v}
[Add α]
{F : Type u_1}
[Add β]
[FunLike F α β]
[AddHomClass F α β]
(f : F)
(a : WithTop α)
(b : WithTop α)
:
WithTop.map (⇑f) (a + b) = WithTop.map (⇑f) a + WithTop.map (⇑f) b
Equations
- WithTop.addSemigroup = AddSemigroup.mk ⋯
Equations
- WithTop.addCommSemigroup = AddCommSemigroup.mk ⋯
Equations
- WithTop.addZeroClass = AddZeroClass.mk ⋯ ⋯
Coercion from α
to WithTop α
as an AddMonoidHom
.
Equations
- WithTop.addHom = { toFun := WithTop.some, map_zero' := ⋯, map_add' := ⋯ }
Instances For
Equations
- WithTop.addCommMonoid = AddCommMonoid.mk ⋯
Equations
- WithTop.addMonoidWithOne = AddMonoidWithOne.mk ⋯ ⋯
@[simp]
@[deprecated WithTop.coe_natCast]
Alias of WithTop.coe_natCast
.
@[deprecated WithTop.natCast_ne_top]
Alias of WithTop.natCast_ne_top
.
@[deprecated WithTop.top_ne_natCast]
Alias of WithTop.top_ne_natCast
.
@[simp]
theorem
WithTop.coe_ofNat
{α : Type u}
[AddMonoidWithOne α]
(n : ℕ)
[n.AtLeastTwo]
:
↑(OfNat.ofNat n) = OfNat.ofNat n
@[simp]
theorem
WithTop.coe_eq_ofNat
{α : Type u}
[AddMonoidWithOne α]
(n : ℕ)
[n.AtLeastTwo]
(m : α)
:
↑m = OfNat.ofNat n ↔ m = OfNat.ofNat n
@[simp]
theorem
WithTop.ofNat_eq_coe
{α : Type u}
[AddMonoidWithOne α]
(n : ℕ)
[n.AtLeastTwo]
(m : α)
:
OfNat.ofNat n = ↑m ↔ OfNat.ofNat n = m
@[simp]
theorem
WithTop.ofNat_ne_top
{α : Type u}
[AddMonoidWithOne α]
(n : ℕ)
[n.AtLeastTwo]
:
OfNat.ofNat n ≠ ⊤
@[simp]
theorem
WithTop.top_ne_ofNat
{α : Type u}
[AddMonoidWithOne α]
(n : ℕ)
[n.AtLeastTwo]
:
⊤ ≠ OfNat.ofNat n
Equations
- ⋯ = ⋯
Equations
- WithTop.addCommMonoidWithOne = AddCommMonoidWithOne.mk ⋯
instance
WithTop.existsAddOfLE
{α : Type u}
[LE α]
[Add α]
[ExistsAddOfLE α]
:
ExistsAddOfLE (WithTop α)
Equations
- ⋯ = ⋯
A version of WithTop.map
for OneHom
s.
Equations
- f.withTopMap = { toFun := WithTop.map ⇑f, map_one' := ⋯ }
Instances For
A version of WithTop.map
for ZeroHom
s
Equations
- f.withTopMap = { toFun := WithTop.map ⇑f, map_zero' := ⋯ }
Instances For
theorem
ZeroHom.withTopMap.proof_1
{M : Type u_2}
{N : Type u_1}
[Zero M]
[Zero N]
(f : ZeroHom M N)
:
WithTop.map (⇑f) 0 = 0
@[simp]
theorem
OneHom.withTopMap_apply
{M : Type u_1}
{N : Type u_2}
[One M]
[One N]
(f : OneHom M N)
:
⇑f.withTopMap = WithTop.map ⇑f
@[simp]
theorem
ZeroHom.withTopMap_apply
{M : Type u_1}
{N : Type u_2}
[Zero M]
[Zero N]
(f : ZeroHom M N)
:
⇑f.withTopMap = WithTop.map ⇑f
A version of WithTop.map
for AddHom
s.
Equations
- f.withTopMap = { toFun := WithTop.map ⇑f, map_add' := ⋯ }
Instances For
@[simp]
theorem
AddHom.withTopMap_apply
{M : Type u_1}
{N : Type u_2}
[Add M]
[Add N]
(f : AddHom M N)
:
⇑f.withTopMap = WithTop.map ⇑f
def
AddMonoidHom.withTopMap
{M : Type u_1}
{N : Type u_2}
[AddZeroClass M]
[AddZeroClass N]
(f : M →+ N)
:
A version of WithTop.map
for AddMonoidHom
s.
Equations
- f.withTopMap = { toFun := WithTop.map ⇑f, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
AddMonoidHom.withTopMap_apply
{M : Type u_1}
{N : Type u_2}
[AddZeroClass M]
[AddZeroClass N]
(f : M →+ N)
:
⇑f.withTopMap = WithTop.map ⇑f
@[simp]
@[simp]
Equations
- ⋯ = ⋯
Equations
- WithBot.AddSemigroup = WithTop.addSemigroup
Equations
- WithBot.addCommSemigroup = WithTop.addCommSemigroup
Equations
- WithBot.addZeroClass = WithTop.addZeroClass
Coercion from α
to WithBot α
as an AddMonoidHom
.
Equations
- WithBot.addHom = { toFun := WithTop.some, map_zero' := ⋯, map_add' := ⋯ }
Instances For
Equations
- WithBot.addCommMonoid = WithTop.addCommMonoid
Equations
- WithBot.addMonoidWithOne = WithTop.addMonoidWithOne
@[deprecated WithBot.coe_natCast]
Alias of WithBot.coe_natCast
.
@[deprecated WithBot.natCast_ne_bot]
Alias of WithBot.natCast_ne_bot
.
@[deprecated WithBot.bot_ne_natCast]
Alias of WithBot.bot_ne_natCast
.
@[simp]
theorem
WithBot.coe_ofNat
{α : Type u}
[AddMonoidWithOne α]
(n : ℕ)
[n.AtLeastTwo]
:
↑(OfNat.ofNat n) = OfNat.ofNat n
@[simp]
theorem
WithBot.coe_eq_ofNat
{α : Type u}
[AddMonoidWithOne α]
(n : ℕ)
[n.AtLeastTwo]
(m : α)
:
↑m = OfNat.ofNat n ↔ m = OfNat.ofNat n
@[simp]
theorem
WithBot.ofNat_eq_coe
{α : Type u}
[AddMonoidWithOne α]
(n : ℕ)
[n.AtLeastTwo]
(m : α)
:
OfNat.ofNat n = ↑m ↔ OfNat.ofNat n = m
@[simp]
theorem
WithBot.ofNat_ne_bot
{α : Type u}
[AddMonoidWithOne α]
(n : ℕ)
[n.AtLeastTwo]
:
OfNat.ofNat n ≠ ⊥
@[simp]
theorem
WithBot.bot_ne_ofNat
{α : Type u}
[AddMonoidWithOne α]
(n : ℕ)
[n.AtLeastTwo]
:
⊥ ≠ OfNat.ofNat n
Equations
- ⋯ = ⋯
Equations
- WithBot.addCommMonoidWithOne = WithTop.addCommMonoidWithOne
@[simp]
theorem
WithBot.map_add
{α : Type u}
{β : Type v}
[Add α]
{F : Type u_1}
[Add β]
[FunLike F α β]
[AddHomClass F α β]
(f : F)
(a : WithBot α)
(b : WithBot α)
:
WithBot.map (⇑f) (a + b) = WithBot.map (⇑f) a + WithBot.map (⇑f) b
A version of WithBot.map
for OneHom
s.
Equations
- f.withBotMap = { toFun := WithBot.map ⇑f, map_one' := ⋯ }
Instances For
theorem
ZeroHom.withBotMap.proof_1
{M : Type u_2}
{N : Type u_1}
[Zero M]
[Zero N]
(f : ZeroHom M N)
:
WithBot.map (⇑f) 0 = 0
A version of WithBot.map
for ZeroHom
s
Equations
- f.withBotMap = { toFun := WithBot.map ⇑f, map_zero' := ⋯ }
Instances For
@[simp]
theorem
OneHom.withBotMap_apply
{M : Type u_1}
{N : Type u_2}
[One M]
[One N]
(f : OneHom M N)
:
⇑f.withBotMap = WithBot.map ⇑f
@[simp]
theorem
ZeroHom.withBotMap_apply
{M : Type u_1}
{N : Type u_2}
[Zero M]
[Zero N]
(f : ZeroHom M N)
:
⇑f.withBotMap = WithBot.map ⇑f
A version of WithBot.map
for AddHom
s.
Equations
- f.withBotMap = { toFun := WithBot.map ⇑f, map_add' := ⋯ }
Instances For
@[simp]
theorem
AddHom.withBotMap_apply
{M : Type u_1}
{N : Type u_2}
[Add M]
[Add N]
(f : AddHom M N)
:
⇑f.withBotMap = WithBot.map ⇑f
def
AddMonoidHom.withBotMap
{M : Type u_1}
{N : Type u_2}
[AddZeroClass M]
[AddZeroClass N]
(f : M →+ N)
:
A version of WithBot.map
for AddMonoidHom
s.
Equations
- f.withBotMap = { toFun := WithBot.map ⇑f, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
AddMonoidHom.withBotMap_apply
{M : Type u_1}
{N : Type u_2}
[AddZeroClass M]
[AddZeroClass N]
(f : M →+ N)
:
⇑f.withBotMap = WithBot.map ⇑f
instance
WithBot.covariantClass_swap_add_le
{α : Type u}
[Add α]
[Preorder α]
[CovariantClass α α (Function.swap fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 ≤ x2]
:
CovariantClass (WithBot α) (WithBot α) (Function.swap fun (x1 x2 : WithBot α) => x1 + x2) fun (x1 x2 : WithBot α) =>
x1 ≤ x2
Equations
- ⋯ = ⋯
instance
WithBot.contravariantClass_swap_add_lt
{α : Type u}
[Add α]
[Preorder α]
[ContravariantClass α α (Function.swap fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 < x2]
:
ContravariantClass (WithBot α) (WithBot α) (Function.swap fun (x1 x2 : WithBot α) => x1 + x2) fun (x1 x2 : WithBot α) =>
x1 < x2
Equations
- ⋯ = ⋯
theorem
WithBot.add_le_add_iff_left
{α : Type u}
[Add α]
{a : WithBot α}
{b : WithBot α}
{c : WithBot α}
[Preorder α]
[CovariantClass α α (fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 ≤ x2]
[ContravariantClass α α (fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 ≤ x2]
(ha : a ≠ ⊥)
:
theorem
WithBot.add_le_add_iff_right
{α : Type u}
[Add α]
{a : WithBot α}
{b : WithBot α}
{c : WithBot α}
[Preorder α]
[CovariantClass α α (Function.swap fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 ≤ x2]
[ContravariantClass α α (Function.swap fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 ≤ x2]
(ha : a ≠ ⊥)
:
theorem
WithBot.add_lt_add_iff_left
{α : Type u}
[Add α]
{a : WithBot α}
{b : WithBot α}
{c : WithBot α}
[Preorder α]
[CovariantClass α α (fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 < x2]
[ContravariantClass α α (fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 < x2]
(ha : a ≠ ⊥)
:
theorem
WithBot.add_lt_add_iff_right
{α : Type u}
[Add α]
{a : WithBot α}
{b : WithBot α}
{c : WithBot α}
[Preorder α]
[CovariantClass α α (Function.swap fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 < x2]
[ContravariantClass α α (Function.swap fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 < x2]
(ha : a ≠ ⊥)
:
theorem
WithBot.add_lt_add_of_le_of_lt
{α : Type u}
[Add α]
{a : WithBot α}
{b : WithBot α}
{c : WithBot α}
{d : WithBot α}
[Preorder α]
[CovariantClass α α (fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 < x2]
[CovariantClass α α (Function.swap fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 ≤ x2]
(hb : b ≠ ⊥)
(hab : a ≤ b)
(hcd : c < d)
:
theorem
WithBot.add_lt_add_of_lt_of_le
{α : Type u}
[Add α]
{a : WithBot α}
{b : WithBot α}
{c : WithBot α}
{d : WithBot α}
[Preorder α]
[CovariantClass α α (fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 ≤ x2]
[CovariantClass α α (Function.swap fun (x1 x2 : α) => x1 + x2) fun (x1 x2 : α) => x1 < x2]
(hd : d ≠ ⊥)
(hab : a < b)
(hcd : c ≤ d)
: