Absolute values in ordered groups #
The absolute value of an element in a group which is also a lattice is its supremum with its
negation. This generalizes the usual absolute value on real numbers (|x| = max x (-x)
).
Notations #
|a|
: The absolute value of an elementa
of an additive lattice ordered group|a|ₘ
: The absolute value of an elementa
of a multiplicative lattice ordered group
theorem
neg_le_of_abs_le
{α : Type u_1}
[LinearOrderedAddCommGroup α]
{a : α}
{b : α}
(h : |a| ≤ b)
:
theorem
le_of_abs_le
{α : Type u_1}
[LinearOrderedAddCommGroup α]
{a : α}
{b : α}
(h : |a| ≤ b)
:
a ≤ b
theorem
apply_abs_le_mul_of_one_le'
{α : Type u_1}
[LinearOrderedAddCommGroup α]
{β : Type u_2}
[MulOneClass β]
[Preorder β]
[CovariantClass β β (fun (x1 x2 : β) => x1 * x2) fun (x1 x2 : β) => x1 ≤ x2]
[CovariantClass β β (Function.swap fun (x1 x2 : β) => x1 * x2) fun (x1 x2 : β) => x1 ≤ x2]
{f : α → β}
{a : α}
(h₁ : 1 ≤ f a)
(h₂ : 1 ≤ f (-a))
:
theorem
apply_abs_le_add_of_nonneg'
{α : Type u_1}
[LinearOrderedAddCommGroup α]
{β : Type u_2}
[AddZeroClass β]
[Preorder β]
[CovariantClass β β (fun (x1 x2 : β) => x1 + x2) fun (x1 x2 : β) => x1 ≤ x2]
[CovariantClass β β (Function.swap fun (x1 x2 : β) => x1 + x2) fun (x1 x2 : β) => x1 ≤ x2]
{f : α → β}
{a : α}
(h₁ : 0 ≤ f a)
(h₂ : 0 ≤ f (-a))
:
theorem
apply_abs_le_mul_of_one_le
{α : Type u_1}
[LinearOrderedAddCommGroup α]
{β : Type u_2}
[MulOneClass β]
[Preorder β]
[CovariantClass β β (fun (x1 x2 : β) => x1 * x2) fun (x1 x2 : β) => x1 ≤ x2]
[CovariantClass β β (Function.swap fun (x1 x2 : β) => x1 * x2) fun (x1 x2 : β) => x1 ≤ x2]
{f : α → β}
(h : ∀ (x : α), 1 ≤ f x)
(a : α)
:
theorem
apply_abs_le_add_of_nonneg
{α : Type u_1}
[LinearOrderedAddCommGroup α]
{β : Type u_2}
[AddZeroClass β]
[Preorder β]
[CovariantClass β β (fun (x1 x2 : β) => x1 + x2) fun (x1 x2 : β) => x1 ≤ x2]
[CovariantClass β β (Function.swap fun (x1 x2 : β) => x1 + x2) fun (x1 x2 : β) => x1 ≤ x2]
{f : α → β}
(h : ∀ (x : α), 0 ≤ f x)
(a : α)
:
The triangle inequality in LinearOrderedAddCommGroup
s.
theorem
sub_le_of_abs_sub_le_left
{α : Type u_1}
[LinearOrderedAddCommGroup α]
{a : α}
{b : α}
{c : α}
(h : |a - b| ≤ c)
:
theorem
sub_le_of_abs_sub_le_right
{α : Type u_1}
[LinearOrderedAddCommGroup α]
{a : α}
{b : α}
{c : α}
(h : |a - b| ≤ c)
:
theorem
sub_lt_of_abs_sub_lt_left
{α : Type u_1}
[LinearOrderedAddCommGroup α]
{a : α}
{b : α}
{c : α}
(h : |a - b| < c)
:
theorem
sub_lt_of_abs_sub_lt_right
{α : Type u_1}
[LinearOrderedAddCommGroup α]
{a : α}
{b : α}
{c : α}
(h : |a - b| < c)
:
theorem
abs_sub_le_of_nonneg_of_le
{α : Type u_1}
[LinearOrderedAddCommGroup α]
{a : α}
{b : α}
{n : α}
(a_nonneg : 0 ≤ a)
(a_le_n : a ≤ n)
(b_nonneg : 0 ≤ b)
(b_le_n : b ≤ n)
:
|a - b| ≤ n
if 0 ≤ a ≤ n
and 0 ≤ b ≤ n
.
theorem
abs_sub_lt_of_nonneg_of_lt
{α : Type u_1}
[LinearOrderedAddCommGroup α]
{a : α}
{b : α}
{n : α}
(a_nonneg : 0 ≤ a)
(a_lt_n : a < n)
(b_nonneg : 0 ≤ b)
(b_lt_n : b < n)
:
|a - b| < n
if 0 ≤ a < n
and 0 ≤ b < n
.
theorem
abs_le_max_abs_abs
{α : Type u_1}
[LinearOrderedAddCommGroup α]
{a : α}
{b : α}
{c : α}
(hab : a ≤ b)
(hbc : b ≤ c)
:
theorem
eq_of_abs_sub_eq_zero
{α : Type u_1}
[LinearOrderedAddCommGroup α]
{a : α}
{b : α}
(h : |a - b| = 0)
:
a = b
theorem
eq_of_abs_sub_nonpos
{α : Type u_1}
[LinearOrderedAddCommGroup α]
{a : α}
{b : α}
(h : |a - b| ≤ 0)
:
a = b
@[simp]
@[simp]
@[simp]
theorem
max_zero_add_max_neg_zero_eq_abs_self
{α : Type u_1}
[LinearOrderedAddCommGroup α]
(a : α)
: