(Semi)linear equivalences #
In this file we define
LinearEquiv σ M M₂,M ≃ₛₗ[σ] M₂: an invertible semilinear map. Here,σis aRingHomfromRtoR₂and ane : M ≃ₛₗ[σ] M₂satisfiese (c • x) = (σ c) • (e x). The plain linear version, withσbeingRingHom.id R, is denoted byM ≃ₗ[R] M₂, and the star-linear version (withσbeingstarRingEnd) is denoted byM ≃ₗ⋆[R] M₂.
Implementation notes #
To ensure that composition works smoothly for semilinear equivalences, we use the typeclasses
RingHomCompTriple, RingHomInvPair and RingHomSurjective from
Algebra/Ring/CompTypeclasses.
The group structure on automorphisms, LinearEquiv.automorphismGroup, is provided elsewhere.
TODO #
- Parts of this file have not yet been generalized to semilinear maps
Tags #
linear equiv, linear equivalences, linear isomorphism, linear isomorphic
A linear equivalence is an invertible linear map.
- toFun : M → M₂
- invFun : M₂ → M
The backwards directed function underlying a linear equivalence.
- left_inv : Function.LeftInverse self.invFun (↑self).toFun
LinearEquiv.invFunis a left inverse to the linear equivalence's underlying function. - right_inv : Function.RightInverse self.invFun (↑self).toFun
LinearEquiv.invFunis a right inverse to the linear equivalence's underlying function.
Instances For
The additive equivalence of types underlying a linear equivalence.
Equations
- self.toAddEquiv = { toFun := (↑self).toFun, invFun := self.invFun, left_inv := ⋯, right_inv := ⋯, map_add' := ⋯ }
Instances For
LinearEquiv.invFun is a right inverse to the linear equivalence's underlying function.
LinearEquiv.invFun is a left inverse to the linear equivalence's underlying function.
SemilinearEquivClass F σ M M₂ asserts F is a type of bundled σ-semilinear equivs
M → M₂.
See also LinearEquivClass F R M M₂ for the case where σ is the identity map on R.
A map f between an R-module and an S-module over a ring homomorphism σ : R →+* S
is semilinear if it satisfies the two properties f (x + y) = f x + f y and
f (c • x) = (σ c) • f x.
Applying a semilinear equivalence
foverσtor • xequalsσ r • f x.
Instances
Applying a semilinear equivalence f over σ to r • x equals σ r • f x.
LinearEquivClass F R M M₂ asserts F is a type of bundled R-linear equivs M → M₂.
This is an abbreviation for SemilinearEquivClass F (RingHom.id R) M M₂.
Equations
- LinearEquivClass F R M M₂ = SemilinearEquivClass F (RingHom.id R) M M₂
Instances For
Equations
- ⋯ = ⋯
Reinterpret an element of a type of semilinear equivalences as a semilinear equivalence.
Equations
- ↑f = { toFun := (↑f).toFun, map_add' := ⋯, map_smul' := ⋯, invFun := (↑f).invFun, left_inv := ⋯, right_inv := ⋯ }
Instances For
Reinterpret an element of a type of semilinear equivalences as a semilinear equivalence.
Equations
- SemilinearEquivClass.instCoeToSemilinearEquiv = { coe := fun (f : F) => ↑f }
Equations
- LinearEquiv.instCoeLinearMap = { coe := LinearEquiv.toLinearMap }
The equivalence of types underlying a linear equivalence.
Equations
- f.toEquiv = f.toAddEquiv.toEquiv
Instances For
Equations
- ⋯ = ⋯
The identity map is a linear equivalence.
Equations
- LinearEquiv.refl R M = { toLinearMap := LinearMap.id, invFun := (Equiv.refl M).invFun, left_inv := ⋯, right_inv := ⋯ }
Instances For
Linear equivalences are symmetric.
Equations
- e.symm = { toFun := ⇑((↑e).inverse e.invFun ⋯ ⋯), map_add' := ⋯, map_smul' := ⋯, invFun := e.toEquiv.symm.invFun, left_inv := ⋯, right_inv := ⋯ }
Instances For
See Note [custom simps projection]
Equations
- LinearEquiv.Simps.apply e = ⇑e
Instances For
See Note [custom simps projection]
Equations
- LinearEquiv.Simps.symm_apply e = ⇑e.symm
Instances For
Linear equivalences are transitive.
Equations
- e₁₂.trans e₂₃ = { toLinearMap := (↑e₂₃).comp ↑e₁₂, invFun := (e₁₂.toEquiv.trans e₂₃.toEquiv).invFun, left_inv := ⋯, right_inv := ⋯ }
Instances For
The two paths coercion can take to an AddMonoidHom are equivalent
Auxiliary definition to avoid looping in dsimp with LinearEquiv.symm_mk.
Equations
- LinearEquiv.symm_mk.aux e f h₁ h₂ h₃ h₄ = { toFun := ⇑e, map_add' := h₁, map_smul' := h₂, invFun := f, left_inv := h₃, right_inv := h₄ }.symm
Instances For
An involutive linear map is a linear equivalence.
Equations
- LinearEquiv.ofInvolutive f hf = { toLinearMap := f, invFun := (Function.Involutive.toPerm (⇑f) hf).invFun, left_inv := ⋯, right_inv := ⋯ }