Documentation

Fp.Multiplication

def f_mul {v e w f : Nat} (a : FixedPoint v e) (b : FixedPoint w f) :
FixedPoint (v + w) (e + f)
Equations
Instances For
    def e_mul {v e w f : Nat} (a : EFixedPoint v e) (b : EFixedPoint w f) :
    EFixedPoint (v + w) (e + f)
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def mulfixed {e s : Nat} (he : 0 < e) (a b : PackedFloat e s) (m : RoundingMode) :
      Equations
      Instances For
        theorem f_mul_comm (a b : FixedPoint 34 16) :
        f_mul a b = f_mul b a
        theorem e_mul_comm (a b : EFixedPoint 34 16) :
        e_mul a b = e_mul b a
        theorem mulfixed_comm (a b : PackedFloat 5 2) (m : RoundingMode) :
        mulfixed a b m = mulfixed b a m
        def mul {e s : Nat} (a b : PackedFloat e s) (m : RoundingMode) :
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem mul_comm (a b : PackedFloat 5 2) (m : RoundingMode) :
          mul a b m = mul b a m
          theorem mul_one_is_id (a : PackedFloat 5 2) (m : RoundingMode) (ha : ¬a.isNaN = true) :
          mul a oneE5M2 m = a